Optimization Methods

Problem specification

Suppose we have a cost function (or objective function)

$$
f(\mathbf{x}): \mathbb{R}^{N} \longrightarrow \mathbb{R}
$$

Our aim is to find values of the parameters (decision variables) \mathbf{x} that minimize this function

$$
\mathbf{x}^{*}=\arg \min _{\mathbf{x}} f(\mathbf{x})
$$

Subject to the following constraints:

- equality: $\quad c_{i}(\mathbf{x})=0$
- nonequality: $\quad c_{j}(\mathbf{x}) \geq 0$

If we seek a maximum of $f(\mathbf{x})$ (profit function) it is equivalent to seeking a minimum of $-f(\mathbf{x})$

Types of minima

- which of the minima is found depends on the starting point

Iterative Optimization Algorithm

- Start at $\mathbf{x}_{0}, k=0$.

1. Compute a search direction \mathbf{p}_{k}
2. Compute a step length α_{k}, such that $f\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right)<f\left(\mathbf{x}_{k}\right)$
3. Update $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}$
4. Check for convergence (stopping criteria)

$$
\text { e.g. } \mathrm{d} f / \mathrm{d} \mathbf{x}=\mathbf{0} \text { or } \frac{\left\|x_{k+1}-x_{k}\right\|}{\left\|x_{k}\right\|}<\epsilon
$$

Reduces optimization in N dimensions to a series of (1D) line minimizations

Unconstrained univariate optimization

```
min}f(x
```


How to determine the minimum?

- Search methods (Dichotomous, Fibonacci, Golden-Section)
- Approximation methods

1. Polynomial interpolation
2. Newton method

- Combination of both (alg. of Davies, Swann, and Campey)
- Inexact Line Search (Fletcher)

1D function

As an example consider the function

$$
f(x)=0.1+0.1 x+x^{2} /\left(0.1+x^{2}\right)
$$

(Evaluation of the function is expensive.)

Search methods

- Start with the interval ("bracket") $\left[\mathrm{x}_{\mathrm{L}}, \mathrm{x}_{\mathrm{U}}\right]$ such that the minimum x* lies inside.
- Evaluate $f(x)$ at two point inside the bracket.
- Reduce the bracket.
- Repeat the process.
- Can be applied to any function and differentiability is not essential.

Search methods

Dichotomous

Fibonacci:

$$
\begin{aligned}
& \begin{array}{llllll}
1 & 2 & 3 & 5 &
\end{array} \\
& \mathrm{I}_{\mathrm{k}+5} \mathrm{I}_{\mathrm{k}+4} \mathrm{I}_{\mathrm{k}+3} \mathrm{I}_{\mathrm{k}+2} \mathrm{I}_{\mathrm{k}+1} \mathrm{I}_{\mathrm{k}} \\
& I_{k}=I_{k+1}+I_{k+2}
\end{aligned}
$$

,Golden-Section Search divides intervals by
$K=1.6180$

$$
\frac{I_{k}}{I_{k+1}}=K
$$

Polynomial interpolation

- Bracket the minimum.
- Fit a quadratic or cubic polynomial which interpolates $f(x)$ at some points in the interval.
- Jump to the (easily obtained) minimum of the polynomial.
- Throw away the worst point and repeat the process.

Polynomial interpolation

- Quadratic interpolation using 3 points, 2 iterations
- Other methods to interpolate?
- 2 points and one gradient
- Cubic interpolation

Newton method

Fit a quadratic approximation to $f(x)$ using both gradient and curvature information at x.

- Expand $f(x)$ locally using a Taylor series.

$$
f(x+\delta x)=f(x)+f^{\prime}(x) \delta x+\frac{1}{2} f^{\prime \prime}(x) \delta x^{2}+o\left(\delta x^{2}\right)
$$

- Find the δx which minimizes this local quadratic approximation.

$$
\delta x=-\frac{f^{\prime}(x)}{f^{\prime \prime}(x)}
$$

- Update $x . \quad x_{n+1}=x_{n}-\delta x=x_{n}-\frac{f^{\prime}(x)}{f^{\prime \prime}(x)}$

Newton method

- avoids the need to bracket the root
- quadratic convergence (decimal accuracy doubles at every iteration)

Newton method

- Global convergence of Newton's method is poor.
- Often fails if the starting point is too far from the minimum.

- in practice, must be used with a globalization strategy which reduces the step length until function decrease is assured

Extension to N (multivariate) dimensions

- How big N can be?
- problem sizes can vary from a handful of parameters to many thousands
- We will consider examples for $\mathrm{N}=2$, so that cost function surfaces can be visualized.

Taylor expansion

A function may be approximated locally by its Taylor series expansion about a point \mathbf{x}^{*}

$$
f\left(\mathbf{x}^{*}+\mathbf{x}\right) \approx f\left(\mathbf{x}^{*}\right)+\nabla f^{T} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \mathbf{H} \mathbf{x}
$$

where the gradient $\nabla f\left(\mathbf{x}^{*}\right)$ is the vector

$$
\nabla f\left(\mathbf{x}^{*}\right)=\left[\frac{\partial f}{x_{1}} \cdots \frac{\partial f}{x_{N}}\right]^{T}
$$

and the Hessian $\mathbf{H}\left(\mathbf{x}^{*}\right)$ is the symmetric matrix

$$
\mathbf{H}\left(\mathrm{x}^{*}\right)=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{N}} \\
\vdots & & \vdots \\
\frac{\partial^{2} f}{\partial x_{N} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{N}^{2}}
\end{array}\right]
$$

Quadratic functions

$$
f(\mathbf{x})=a+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \mathbf{H} \mathbf{x}
$$

- The vector \mathbf{g} and the Hessian \mathbf{H} are constant.
- Second order approximation of any function by the Taylor expansion is a quadratic function.

We will assume only quadratic functions for a while.

Necessary conditions for a minimum

$$
f(\mathbf{x})=a+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \mathbf{H} \mathbf{x}
$$

Expand $f(\mathbf{x})$ about a stationary point \mathbf{x}^{*} in direction \mathbf{p}

$$
\begin{aligned}
f\left(\mathbf{x}^{*}+\alpha \mathbf{p}\right) & =f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right)^{T} \alpha \mathbf{p}+\frac{1}{2} \alpha^{2} \mathbf{p}^{T} \mathbf{H} \mathbf{p} \\
& =f\left(\mathbf{x}^{*}\right)+\frac{1}{2} \alpha^{2} \mathbf{p}^{T} \mathbf{H} \mathbf{p}
\end{aligned}
$$

since at a stationary point $\quad \nabla f\left(\mathbf{x}^{*}\right)=0$

At a stationary point the behavior is determined by \mathbf{H}

- \mathbf{H} is a symmetric matrix, and so has orthogonal eigenvectors

$$
\begin{aligned}
\mathbf{H} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} & \quad\left\|\mathbf{u}_{i}\right\|=1 \\
f\left(\mathbf{x}^{*}+\alpha \mathbf{u}_{i}\right)= & f\left(\mathbf{x}^{*}\right)+\frac{1}{2} \alpha^{2} \mathbf{u}_{i}^{T} \mathbf{H} \mathbf{u}_{i} \\
= & f\left(\mathbf{x}^{*}\right)+\frac{1}{2} \alpha^{2} \lambda_{i}
\end{aligned}
$$

As $|\alpha|$ increases, $f\left(\mathbf{x}^{*}+\alpha \mathbf{u}_{i}\right)$ increases, decreases or is unchanging according to whether λ_{i} is positive, negative or zero

Examples of quadratic functions

Case 1: both eigenvalues positive

$$
\begin{aligned}
f(\mathbf{x}) & =a+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \mathbf{H} \mathbf{x} \\
\mathbf{g} & =\left[\begin{array}{l}
-50 \\
-50
\end{array}\right], \quad \mathbf{H}=\left[\begin{array}{ll}
6 & 4 \\
4 & 6
\end{array}\right] \begin{array}{l}
\text { positive } \\
\text { definite }
\end{array}
\end{aligned}
$$

with

minimum

Examples of quadratic functions

Case 2: eigenvalues have different sign
with

$$
f(\mathbf{x})=a+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \mathbf{H} \mathbf{x}
$$

$$
a=0, \quad \mathbf{g}=\left[\begin{array}{c}
-30 \\
20
\end{array}\right], \quad \mathbf{H}=\left[\begin{array}{cc}
6 & 0 \\
0 & -4
\end{array}\right] \text { indefinite }
$$

saddle point

Examples of quadratic functions

Case 3: one eigenvalues is zero

$$
f(\mathbf{x})=a+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \mathbf{H} \mathbf{x}
$$

with

$$
a=0, \quad \mathbf{g}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \mathbf{H}=\left[\begin{array}{ll}
6 & 0 \\
0 & 0
\end{array}\right] \begin{aligned}
& \text { positive } \\
& \text { semidefinite }
\end{aligned}
$$

parabolic cylinder

Optimization for quadratic functions

Assume that \mathbf{H} is positive definite

$$
\begin{gathered}
f(\mathbf{x})=a+\mathbf{g}^{T} \mathbf{x}+\frac{1}{2} \mathbf{x}^{T} \mathbf{H} \mathbf{x} \\
\nabla f(\mathbf{x})=\mathbf{g}+\mathbf{H x}
\end{gathered}
$$

There is a unique minimum at

$$
\mathbf{x}^{*}=-\mathbf{H}^{-1} \mathbf{g}
$$

If N is large, it is not feasible to perform this inversion directly.

How to find descent directions?

- Start at $\mathbf{x}_{0}, k=0$.

1. Compute a search direction \mathbf{p}_{k}
2. Compute a step length α_{k}, such that $f\left(\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}\right)<f\left(\mathbf{x}_{k}\right)$
3. Update $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}$
4. Check for convergence (stopping criteria)

Steepest descent

- Basic principle is to minimize the N -dimensional function by a series of 1D line-minimizations:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k}
$$

- The steepest descent method chooses \mathbf{p}_{k} to be parallel to the gradient

$$
\mathbf{p}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)
$$

- \quad Step-size α_{k} is chosen to minimize $f\left(\mathbf{x}_{\mathrm{k}}+\alpha_{\mathrm{k}} \mathbf{p}_{\mathrm{k}}\right)$.

For quadratic forms there is a closed form solution:

$$
\alpha_{k}=\frac{\mathbf{p}_{k}^{T} \mathbf{p}_{k}}{\mathbf{p}_{k}^{T} \mathbf{H} \mathbf{p}_{k}}
$$

Steepest descent

- The gradient is everywhere perpendicular to the contour lines.
- After each line minimization the new gradient is always orthogonal to the previous step direction (true of any line minimization).
- Consequently, the iterates tend to zig-zag down the valley in a very inefficient manner

Conjugate gradient

- Each \mathbf{p}_{k} is chosen to be conjugate to all previous search directions with respect to the Hessian \mathbf{H} :

$$
\mathbf{p}_{i}^{T} \mathbf{H} \mathbf{p}_{j}=0, \quad i \neq j
$$

- The resulting search directions are mutually linearly independent.
- Remarkably, \mathbf{p}_{k} can be chosen using only knowledge of $\mathbf{p}_{\mathrm{k}-1}, \nabla f\left(\mathrm{x}_{k-1}\right)$, and $\nabla f\left(\mathrm{x}_{k}\right)$

$$
\mathbf{p}_{k}=\nabla f_{k}+\left(\frac{\nabla f_{k}^{\top} \nabla f_{k}}{\nabla f_{k-1}^{\top} \nabla f_{k-1}}\right) \mathbf{p}_{k-1}
$$

Conjugate gradient

- An N -dimensional quadratic form can be minimized in at most N conjugate descent steps.

- 3 different starting points.
- Minimum is reached in exactly 2 steps.

Powell's Algorithm

- Conjugate-gradient method that does not require derivatives
- Conjugate directions are generated through a series of line searches

- N-dim quadratic function is minimized with $N(N+1)$ line searches

Optimization of general functions

E.g., Rosenbrock's function:

$$
f(x, y)=100\left(y-x^{2}\right)^{2}+(1-x)^{2}
$$

Minimum at $[1,1]$

Steepest descent

- The 1D line minimization must be performed using one of the earlier methods (usually cubic polynomial interpolation)

- The zig-zag behaviour is clear in the zoomed view
- The algorithm crawls down the valley

Conjugate gradient

- Again, an explicit line minimization must be used at every step

- The algorithm converges in 98 iterations
- Far superior to steepest descent

Newton method

Expand $f(\mathbf{x})$ by its Taylor series about the point \mathbf{x}_{k}

$$
f\left(\mathbf{x}_{k}+\delta \mathbf{x}\right) \approx f\left(\mathbf{x}_{k}\right)+\mathbf{g}_{k}^{T} \delta \mathbf{x}+\frac{1}{2} \delta \mathbf{x}^{T} \mathbf{H}_{k} \delta \mathbf{x}
$$

where the gradient is the vector

$$
\mathbf{g}_{k}=\nabla f\left(\mathbf{x}_{k}\right)=\left[\frac{\partial f}{x_{1}} \cdots \frac{\partial f}{x_{N}}\right]^{T}
$$

and the Hessian is the symmetric matrix

$$
\mathbf{H}_{k}=\mathbf{H}\left(\mathbf{x}_{k}\right)=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{N}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{N} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{N}^{2}}
\end{array}\right]
$$

Newton method

For a minimum we require that $\nabla f(\mathbf{x})=\mathbf{0}$, and so

$$
\nabla f(\mathbf{x})=\mathbf{g}_{k}+\mathbf{H}_{k} \delta \mathbf{x}=\mathbf{0}
$$

with solution $\delta \mathbf{x}=-\mathbf{H}_{k}^{-1} \mathbf{g}_{k}$. This gives the iterative update

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\mathbf{H}_{k}^{-1} \mathbf{g}_{k}
$$

- If $f(\mathbf{x})$ is quadratic, then the solution is found in one step.
- The method has quadratic convergence (as in the 1D case).
- The solution $\delta \mathbf{x}=-\mathbf{H}_{k}^{-1} \mathbf{g}_{k}$ is guaranteed to be a downhill direction.
- Rather than jump straight to the minimum, it is better to perform a line minimization which ensures global convergence

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \mathbf{H}_{k}^{-1} \mathbf{g}_{k}
$$

- If $\mathbf{H}=\mathbf{I}$ then this reduces to steepest descent.

Newton method - example

- The algorithm converges in only 18 iterations compared to the 98 for conjugate gradients.
- However, the method requires computing the Hessian matrix at each iteration - this is not always feasible

Quasi-Newton methods

- If the problem size is large and the Hessian matrix is dense then it may be infeasible/inconvenient to compute it directly.
- Quasi-Newton methods avoid this problem by keeping a "rolling estimate" of $\mathrm{H}(\mathrm{x})$, updated at each iteration using new gradient information.
- Common schemes are due to Broyden, Goldfarb, Fletcher and Shanno (BFGS), and also Davidson, Fletcher and Powell (DFP).
- The idea is based on the fact that for quadratic functions holds

$$
\mathbf{g}_{k+1}-\mathbf{g}_{k}=\mathbf{H}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)
$$

and by accumulating \mathbf{g}_{k} 's and \mathbf{x}_{k} 's we can calculate \mathbf{H}.

BFGS example

- The method converges in 34 iterations, compared to 18 for the full-Newton method

Non-linear least squares

- It is very common in applications for a cost function $f(\mathbf{x})$ to be the sum of a large number of squared residuals

$$
f(\mathbf{x})=\sum_{i=1}^{M} r_{i}^{2}(\mathbf{x})
$$

- If each residual depends non-linearly on the parameters \mathbf{x} then the minimization of $f(\mathbf{x})$ is a non-linear least squares problem.

Non-linear least squares

$$
f(\mathbf{x})=\sum_{i=1}^{M} r_{i}^{2}(\mathbf{x})
$$

- The $\mathrm{M} \times \mathrm{N}$ Jacobian of the vector of residuals r is defined as

$$
J(\mathbf{x})=\left[\begin{array}{ccc}
\frac{\partial r_{1}}{\partial x_{1}} & \cdots & \frac{\partial r_{1}}{\partial x_{N}} \\
\vdots & \ddots & \vdots \\
\frac{\partial r_{M}}{\partial x_{1}} & \cdots & \frac{\partial r_{M}}{\partial x_{N}}
\end{array}\right]
$$

- Consider

$$
\frac{\partial f}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \sum_{i} r_{i}^{2}=\sum_{i} 2 r_{i} \frac{\partial r_{i}}{\partial x_{k}}
$$

- Hence

$$
\nabla f(\mathbf{x})=2 \mathbf{J}^{T} \mathbf{r}
$$

Non-linear least squares

- For the Hessian holds

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x_{k} \partial x_{l}}=\underbrace{2 \sum_{i} \frac{\partial r_{i}}{\partial x_{l}} \frac{\partial r_{i}}{\partial x_{k}}}+2 \sum_{i} r_{i} \frac{\partial^{2} r_{i}}{\partial x_{k} \partial x_{l}} \\
\mathbf{H}(\mathbf{x}) \approx 2 \mathbf{J}^{T} \mathbf{J}
\end{gathered} \begin{array}{r}
\text { Gauss-Newton } \\
\text { approximation }
\end{array}
$$

- Note that the second-order term in the Hessian is multiplied by the residuals r_{i}.
- In most problems, the residuals will typically be small.
- Also, at the minimum, the residuals will typically be distributed with mean $=0$.
- For these reasons, the second-order term is often ignored.
- Hence, explicit computation of the full Hessian can again be avoided.

Gauss-Newton example

- The minimization of the Rosenbrock function

$$
f(x, y)=100\left(y-x^{2}\right)^{2}+(1-x)^{2}
$$

- can be written as a least-squares problem with residual vector

$$
\begin{gathered}
\mathbf{r}=\left[\begin{array}{c}
10\left(y-x^{2}\right) \\
(1-x)
\end{array}\right] \\
\mathbf{J}=\left[\begin{array}{cc}
\frac{\partial r_{1}}{\partial x} & \frac{\partial r_{1}}{\partial y} \\
\frac{\partial r_{2}}{\partial x} & \frac{\partial r_{2}}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
-20 x & 10 \\
-1 & 0
\end{array}\right]
\end{gathered}
$$

Gauss-Newton example

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\alpha_{k} \mathbf{H}_{k}^{-1} \mathbf{g}_{k} \quad \mathbf{H}_{k}=2 \mathbf{J}_{k}^{T} \mathbf{J}_{k}
$$

- minimization with the Gauss-Newton approximation with line search takes only 11 iterations

Levenberg-Marquardt Algorithm

- For non-linear least square problems
- Combines Gauss-Newton with Steepest Descent
- Fast convergence even for very "flat" functions
- Descend direction $\delta \mathbf{x}$:
- Newton

$$
\begin{gathered}
\mathbf{H} \delta \mathbf{x}=-\mathbf{g} \quad \delta \mathbf{x}=-\mathbf{g} \\
\mathbf{J}^{T} \mathbf{J} \delta \mathbf{x}=-\mathbf{J}^{T} \mathbf{r} \\
\left(\mathbf{J}^{T} \mathbf{J}+\lambda \mathbf{I}\right) \delta \mathbf{x}=-\mathbf{J}^{T} \mathbf{r} \\
\left(\mathbf{J}^{T} \mathbf{J}+\lambda \operatorname{diag}\left(\mathbf{J}^{T} \mathbf{J}\right)\right) \delta \mathbf{x}=-\mathbf{J}^{T} \mathbf{r}
\end{gathered}
$$

- Steepest Descent

$$
\begin{aligned}
& \mathbf{g}=2 \mathbf{J}^{T} \mathbf{r} \\
& \mathbf{H}=2 \mathbf{J}^{T} \mathbf{J}
\end{aligned}
$$

Comparison

CG

Quasi-Newton

Newton

Gauss-Newton

Derivative-free optimization

Downhill simplex method

expansion

Downhill Simplex

Comparison

CG

Quasi-Newton

Newton

Downhill Simplex

Rates of Convergence

$$
\beta=\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|^{p}}
$$

x* ... minimum
$p \ldots$ order of convergence
β... convergence ratio

Linear conv.:
Superlinear conv.:
Quadratic conv.:

$$
\begin{aligned}
& \mathrm{p}=1, \beta<1 \\
& \mathrm{p}=1, \beta=0 \text { or } \mathrm{p}=>2 \\
& \mathrm{p}=2
\end{aligned}
$$

Constrained Optimization

$f(\mathrm{x}): \mathbb{R}^{N} \longrightarrow \mathbb{R}$

$$
\mathbf{x}^{*}=\arg \min _{\mathbf{x}} f(\mathbf{x})
$$

Subject to:

- Equality constraints:

$$
a_{i}(\mathbf{x})=0 \quad i=1,2, \ldots, p
$$

- Nonequality constraints: $\quad c_{j}(x) \leq 0 \quad j=1,2, \ldots, q$
- Constraints define a feasible region, which is nonempty.
- The idea is to convert it to an unconstrained optimization.

Equality constraints

- Minimize $f(\mathbf{x})$ subject to: $a_{i}(\mathbf{x})=0$ for $i=1,2, \ldots, p$
- The gradient of $f(\mathbf{x})$ at a local minimizer is equal to the linear combination of the gradients of $a_{i}(\mathbf{x})$ with
Lagrange multipliers as the coefficients.

$$
\nabla f\left(\mathbf{x}^{*}\right)=\sum_{i=1}^{p} \lambda_{i}^{*} \nabla a_{i}\left(\mathbf{x}^{*}\right)
$$

$f_{3}>f_{2}>f_{1}$
$f_{3}>f_{2}>f_{1}$
$\tilde{\mathrm{x}}$ is not a minimizer
x^{*} is a minimizer, $\lambda^{*}>0$

3D Example

$$
\begin{array}{|}
a_{1}(\mathbf{x})=-x_{1}+x_{3}-1=0 \\
a_{2}(\mathbf{x})=x_{1}^{2}+x_{2}^{2}-2 x_{1}=0
\end{array}
$$

3D Example

$$
f(\mathrm{x})=x_{1}^{2}+x_{2}^{2}+\frac{1}{4} x_{3}^{2}
$$

$$
f(\mathbf{x})=3
$$

Gradients of constraints and objective function are linearly independent.

3D Example

$$
f(\mathbf{x})=x_{1}^{2}+x_{2}^{2}+\frac{1}{4} x_{3}^{2}
$$

$$
f(\mathbf{x})=1
$$

Gradients of constraints and objective function are linearly dependent.

Inequality constraints

- Minimize $f(\mathbf{x})$ subject to: $c_{j}(x) \leq 0$ for $j=1,2, \ldots, q$
- The gradient of $f(\mathbf{x})$ at a local minimizer is equal to the linear combination of the gradients of $c_{j}(\mathbf{x})$, which are active $\left(c_{j}(\mathbf{x})=0\right)$
- and Lagrange multipliers must be positive, $\mu_{j} \geq 0, j \in A$

$$
\nabla f\left(\mathbf{x}^{*}\right)=-\sum_{j \in A} \mu_{j}^{*} \nabla c_{j}\left(\mathbf{x}^{*}\right)
$$

$$
f_{3}>f_{2}>f_{1}
$$

No active constraints at $\mathrm{x}^{*}, \quad \nabla f(\mathbf{x})=\mathbf{0}$

Lagrangien

- We can introduce the function (Lagrangian)

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum_{i=1}^{p} \lambda_{i} a_{i}(\mathbf{x})+\sum_{j=1}^{q} \mu_{j} c_{j}(\mathbf{x})
$$

- The necessary condition for the local minimizer is

$$
\nabla L(x, \boldsymbol{\lambda}, \boldsymbol{\mu})=0 \Longleftrightarrow \frac{\partial L}{\partial x}=0, \quad \frac{\partial L}{\partial \boldsymbol{\lambda}}=0, \quad \frac{\partial L}{\partial \boldsymbol{\mu}}=0
$$

and it must be a feasible point (i.e. constraints are satisfied).

- These are Karush-Kuhn-Tucker conditions

Dual Problem

Primal problem: minimize $f(x)$ subject to: $c(x) \leq 0$

Lagrangian: $\quad L(x, \mu)=f(x)+\mu c(x)$

Dual function: $g(\mu)=\inf _{x} L(x, \mu)$ is always concave!
Dual problem: maximize $g(\mu)$
subject to: $\mu \geq 0$

If f and c convex \rightarrow sup $g=\inf f$ (almost always)

- Linear functions: $L_{x}(\mu) \equiv L(x, \mu)=f(x)+\mu c(x)$

Toy Case

$$
\min _{x} x^{2} \quad \text { subject to } \quad 1-x \leq 0 \quad L(x, \mu=2)
$$

x

$$
L(x, \mu)=x^{2}+\mu(1-x)
$$

Solution is a saddle point

$$
\begin{aligned}
& x=1, \mu=2 \\
& g(\mu)=\min _{x} L(x, \mu)
\end{aligned}
$$

Dual Function

Proximal operator

- Problems of type:

$$
a^{*}=\arg \min _{a} \frac{1}{2}\|a-b\|_{2}^{2}+\lambda \rho(a)=\operatorname{prox}_{\lambda \rho}(b)
$$

- If $\rho(a)$ closed proper convex

$$
=>\quad \text { e.g. indicator function }
$$

$\operatorname{prox}_{\rho}(b)$ strictly convex
=>
unique minimizer

Examples of prox operators

- L1 norm ->
soft thresholding

$$
\rho=\|\quad\|_{1} \quad \rightarrow \quad \operatorname{prox}_{\| \|_{1}}(b):=S_{\lambda}(b)
$$

- Indicator function of a convex set C-> projection onto C

$$
\rho=I_{C} \quad \rightarrow \quad \operatorname{prox}_{I_{C}}(b):=\Pi_{C}(b)
$$

Alternating Direction Method of Multipliers

Gabay et al., 1976

- f, g convex but not necessary smooth

$$
\min _{\mathbf{x}} f(\mathbf{x})+g(\mathbf{A} \mathbf{x})
$$

- e.g.: g is $L 1$ norm or positivity constraint Deconvolution with TV regularization

$$
\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{H} \mathbf{x}-\mathbf{g}\|_{2}^{2}+\lambda\|\mathbf{D} \mathbf{x}\|_{1}
$$

Alternating Direction Method of Multipliers

Gabay et al., 1976

- f, g convex but not necessary smooth

$$
\min _{\mathbf{x}} f(\mathbf{x})+g(\mathbf{A} \mathbf{x})
$$

- e.g.: g is $L 1$ norm or positivity constraint
- variable splitting

$$
\min _{\mathbf{x}, \mathbf{z}} f(\mathbf{x})+g(\mathbf{z}) \quad \text { s.t. } \quad \mathbf{A} \mathbf{x}-\mathbf{z}=0
$$

- Augmented Lagrangian:

$$
L(\mathbf{x}, \mathbf{z}, \mathbf{y})=f(\mathbf{x})+g(\mathbf{z})+\mathbf{y}^{T}(\mathbf{A} \mathbf{x}-\mathbf{z})+(\rho / 2)\|\mathbf{A} \mathbf{x}-\mathbf{z}\|_{2}^{2}
$$

Alternating Direction Method of Multipliers

$$
L(\mathbf{x}, \mathbf{z}, \mathbf{y})=f(\mathbf{x})+g(\mathbf{z})+\mathbf{y}^{T}(\mathbf{A} \mathbf{x}-\mathbf{z})+(\rho / 2)\|\mathbf{A} \mathbf{x}-\mathbf{z}\|_{2}^{2}
$$

- ADMM

$$
\begin{array}{ll}
\mathbf{x}^{k+1}:=\arg \min _{\mathbf{x}} L\left(\mathbf{x}, \mathbf{z}^{k}, \mathbf{y}^{k}\right) & x \text { minimization } \\
\mathbf{z}^{k+1}:=\arg \min _{\mathbf{z}} L\left(\mathbf{x}^{k+1}, \mathbf{z}, \mathbf{y}^{k}\right) & z \text { minimization } \\
\mathbf{y}^{k+1}:=\mathbf{y}^{k}+\rho\left(\mathbf{A} \mathbf{x}^{k+1}-\mathbf{z}^{k+1}\right) & \text { dual update }
\end{array}
$$

ADMM with scaled dual variable

- combine linear and quadratic terms

$$
\begin{aligned}
L(\mathbf{x}, \mathbf{z}, \mathbf{y}) & =f(\mathbf{x})+g(\mathbf{z})+\mathbf{y}^{T}(\mathbf{A} \mathbf{x}-\mathbf{z})+(\rho / 2)\|\mathbf{A} \mathbf{x}-\mathbf{z}\|_{2}^{2} \\
& =f(\mathbf{x})+g(\mathbf{z})+(\rho / 2)\|\mathbf{A} \mathbf{x}-\mathbf{z}+\mathbf{u}\|_{2}^{2}+\mathrm{const}
\end{aligned}
$$

with

$$
\mathbf{u}=(1 / \rho) \mathbf{y}
$$

- ADMM (scaled dual form):

$$
\begin{aligned}
& \mathbf{x}^{k+1}:=\arg \min _{\mathbf{x}}\left(f(\mathbf{x})+(\rho / 2)\left\|\mathbf{A} \mathbf{x}-\mathbf{z}^{k}+\mathbf{u}^{k}\right\|_{2}^{2}\right) \\
& \mathbf{z}^{k+1}:=\arg \min _{\mathbf{z}}\left(g(\mathbf{z})+(\rho / 2)\left\|\mathbf{A} \mathbf{x}^{k+1}-\mathbf{z}+\mathbf{u}^{k}\right\|_{2}^{2}\right) \\
& \mathbf{u}^{k+1}:=\mathbf{u}^{k}+\left(\mathbf{A} \mathbf{x}^{k+1}-\mathbf{z}^{k+1}\right)
\end{aligned}
$$

ADMM - example

- Deconvolution with TV regularization

$$
\min _{\mathbf{x}}(1 / 2)\|\mathbf{H} \mathbf{x}-\mathbf{g}\|_{2}^{2}+\lambda\|\mathbf{D} \mathbf{x}\|_{1}
$$

- Augmented Lagrangian

$$
L(\mathbf{x}, \mathbf{z}, \mathbf{v}) \propto(1 / 2)\|\mathbf{H} \mathbf{x}-\mathbf{g}\|_{2}^{2}+\lambda\|\mathbf{z}\|_{1}+(\rho / 2)\|\mathbf{D} \mathbf{x}-\mathbf{z}+\mathbf{v}\|_{2}^{2}
$$

- ADMM

1) $\mathbf{x} \leftarrow \arg \min _{\mathbf{x}} L(\mathbf{x}, \mathbf{z}, \mathbf{v})$

System of linear equations (CG):

$$
\mathbf{x} \leftarrow\left(\mathbf{H}^{T} \mathbf{H}+\rho \mathbf{D}^{T} \mathbf{D}\right) \mathbf{x}=\mathbf{H}^{T} \mathbf{g}+\rho \mathbf{D}^{T}(\mathbf{z}-\mathbf{v})
$$

2) $\quad \mathbf{z} \leftarrow \arg \min _{\mathbf{z}} L(\mathbf{x}, \mathbf{z}, \mathbf{v}) \quad$ Proximal operator (soft-thresholding)

$$
\mathbf{z} \leftarrow S_{\lambda / \rho}(\mathbf{D x}+\mathbf{v})
$$

3) $\mathbf{v} \leftarrow \mathbf{v}+(\mathbf{D} \mathbf{x}-\mathbf{z})$

Quadratic Programming (QP)

- Like in the unconstrained case, it is important to study quadratic functions. Why?
- Because general nonlinear problems are solved as a sequence of minimizations of their quadratic approximations.
- QP with constraints

Minimize $\quad f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{H x}+\mathbf{x}^{T} \mathbf{p}$
subject to linear constraints.

- \mathbf{H} is symmetric and positive semidefinite.

QP with Equality Constraints

- Minimize $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{H x}+\mathbf{x}^{T} \mathbf{p}$

Subject to: $\quad \mathrm{Ax}=\mathrm{b}$

- Ass.: A is $p \times N$ and has full row rank ($p<N$)
- Convert to unconstrained problem by variable elimination:

$$
\mathrm{x}=\mathrm{Z} \phi+\mathrm{A}^{+} \mathrm{b}
$$

Z is the null space of A
A^{+}is the pseudo-inverse.
$\begin{array}{lll}\text { Minimize } & \hat{f}(\phi)=\frac{1}{2} \phi^{T} \hat{\mathbf{H}} \boldsymbol{\phi}+\boldsymbol{\phi}^{T} \hat{\mathbf{p}} & \hat{\mathbf{H}}\end{array}=\mathbf{Z}^{T} \mathbf{H Z}, \hat{\mathbf{p}}=\mathbf{Z}^{T}\left(\mathbf{H A}^{+} \mathbf{b}+\mathbf{p}\right)$
This quadratic unconstrained problem can be solved, e.g., by Newton method.

QP with inequality constraints

- Minimize $f(\mathbf{x})=\frac{1}{2} \mathbf{x}^{T} \mathbf{H x}+\mathbf{x}^{T} \mathbf{p}$

Subject to: $A x \geq b$

- First we check if the unconstrained minimizer $\mathrm{x}^{*}=-\mathrm{H}^{-1} \mathrm{p}$ is feasible.
If yes we are done.
If not we know that the minimizer must be on the boundary and we proceed with an active-set method.
- \mathbf{x}_{k} is the current feasible point
- \mathcal{A}_{k} is the index set of active constraints at \mathbf{x}_{k}
- Next iterate is given by $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k}$

Active-set method

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{d}_{k} \text { How to find } \mathbf{d}_{k} ?
$$

$$
\mathbf{A}^{T}=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{p}\right]
$$

- To remain active $\mathbf{a}_{j}^{T} \mathbf{x}_{k+1}-b_{j}=0 \quad$ thus $\quad \mathbf{a}_{j}^{T} \mathbf{d}_{k}=0 \quad j \in \mathcal{A}_{k}$
- The objective function at $\mathbf{x}_{k}+\mathbf{d}$ becomes

$$
f_{k}(\mathbf{d})=\frac{1}{2} \mathbf{d}^{T} \mathbf{H d}+\mathbf{d}^{T} \mathbf{g}_{k}+f\left(\mathbf{x}_{k}\right) \quad \text { where } \quad \mathbf{g}_{k}=\nabla f\left(\mathbf{x}_{k}\right)
$$

- The major step is a QP sub-problem

$$
\begin{array}{ll}
\mathbf{d}_{k}=\arg \min _{\mathbf{d}} & \frac{1}{2} \mathbf{d}^{T} \mathbf{H d}+\mathbf{d}^{T} \mathbf{g}_{k} \\
\text { subject to: } & \mathbf{a}_{j}^{T} \mathbf{d}=0 \quad j \in \mathcal{A}_{k}
\end{array}
$$

- Two situations may occur: $\mathbf{d}_{k}=\mathbf{0}$ or $\mathbf{d}_{k} \neq \mathbf{0}$

Active-set method

- $\mathrm{d}_{k}=\mathbf{0}$

We check if KKT conditions are satisfied

$$
\nabla_{x} L(\mathbf{x}, \boldsymbol{\mu})=\mathbf{H} \mathbf{x}_{k}+\mathbf{p}-\sum_{j \in \mathcal{A}_{k}} \mu_{j} \mathbf{a}_{j}=\mathbf{0} \quad \text { and } \quad \mu_{j} \geq 0
$$

If YES we are done.
If NO we remove the constraint from the active set \mathcal{A}_{k} with the most negative μ_{j} and solve the QP sub-problem again but this time with less active constraints.

- $\mathrm{d}_{k} \neq 0$

We can move to $\mathrm{x}_{k+1}=\mathrm{x}_{k}+\mathrm{d}_{k} \quad$ but some inactive constraints may be violated on the way.
In this case, we move by $\alpha_{k} \mathrm{~d}_{k}$ till the first inactive constraint becomes active, update \mathcal{A}_{k}, and solve the QP sub-problem again but this time with more active constraints.

General Nonlinear Optimization

- Minimize $f(\mathbf{x})$
subject to: $a_{i}(\mathbf{x})=0$

$$
c_{j}(\mathbf{x}) \geq 0
$$

where the objective function and constraints are nonlinear.

1. For a given $\left\{\mathbf{x}_{k}, \boldsymbol{\lambda}_{k}, \boldsymbol{\mu}_{k}\right\}$ approximate Lagrangien by Taylor series \rightarrow QP problem
2. Solve QP \rightarrow descent direction $\left\{\boldsymbol{\delta}_{x}, \boldsymbol{\delta}_{\lambda}, \boldsymbol{\delta}_{\mu}\right\}$
3. Perform line search in the direction $\boldsymbol{\delta}_{x} \rightarrow \mathrm{x}_{k+1}$
4. Update Lagrange multipliers $\rightarrow\left\{\boldsymbol{\lambda}_{k+1}, \boldsymbol{\mu}_{k+1}\right\}$
5. Repeat from Step 1.

General Nonlinear Optimization

Lagrangien $\quad L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})-\sum_{i=1}^{p} \lambda_{i} a_{i}(\mathbf{x})-\sum_{j=1}^{q} \mu_{j} c_{j}(\mathbf{x})$
At the k th iterate: $\left\{\mathrm{x}_{k}, \boldsymbol{\lambda}_{k}, \boldsymbol{\mu}_{k}\right\}$ and we want to compute a set of increments: $\left\{\boldsymbol{\delta}_{x}, \boldsymbol{\delta}_{\lambda}, \boldsymbol{\delta}_{\mu}\right\}$

First order approximation of $\nabla_{x} L$ and constraints:

- $\nabla_{x} L\left(\mathbf{x}_{k+1}, \boldsymbol{\lambda}_{k+1}, \boldsymbol{\mu}_{k+1}\right) \approx \nabla_{x} L\left(\mathbf{x}_{k}, \boldsymbol{\lambda}_{k}, \boldsymbol{\mu}_{k}\right)+{ }^{\prime}$

$$
+\nabla_{x}^{2} L\left(\mathbf{x}_{k}, \boldsymbol{\lambda}_{k}, \boldsymbol{\mu}_{k}\right) \boldsymbol{\delta}_{x}+\nabla_{x \lambda}^{2} L\left(\mathbf{x}_{k}, \boldsymbol{\lambda}_{k}, \boldsymbol{\mu}_{k}\right) \boldsymbol{\delta}_{\lambda}+\nabla_{x \mu}^{2} L\left(\mathbf{x}_{k}, \boldsymbol{\lambda}_{k}, \boldsymbol{\mu}_{k}\right) \boldsymbol{\delta}_{\mu}=\mathbf{0}
$$

- $c_{i}\left(\mathbf{x}_{k+1}\right) \approx c_{i}\left(\mathbf{x}_{k}\right)+\boldsymbol{\delta}_{x}^{T} \nabla_{x} c_{i}\left(\mathbf{x}_{k}\right) \geq 0$
- $a_{i}\left(\mathbf{x}_{k+1}\right) \approx a_{i}\left(\mathbf{x}_{k}\right)+\boldsymbol{\delta}_{x}^{T} \nabla_{x} a_{i}\left(\mathbf{x}_{k}\right)=0$

These approximate KKT conditions corresponds to a QP program

SQP example

Minimize $\quad f(x, y)=100\left(y-x^{2}\right)^{2}+(1-x)^{2}$
subject to: $\quad 1.5-x_{1}^{2}-x_{2}^{2} \geq 0$

Linear Programming (LP)

- LP is common in economy and is meaningful only if it is with constraints.
- Two forms:

1. Minimize $\quad f(\mathbf{x})=\mathbf{c}^{T} \mathbf{x}$
$\begin{array}{rlrl}\text { subject to: } & & \mathbf{A x} & =\mathbf{b} \\ \text { Minimize } & & & \\ \mathbf{x} & \geq 0 \\ & & =\mathbf{x}) & =\mathbf{c}^{T} \mathbf{x}\end{array}$
subject to: $\quad \mathbf{A x} \geq \mathbf{b}$

- QP can solve LP.
- If the LP minimizer exists it must be one of the vertices of the feasible region.
- A fast method that considers vertices is the Simplex method.

