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Abstract: This thesis presents a deep learning-based approach to fragment recon-

struction, with a focus on artwork restoration. Reconstruction is often necessary

in fields like art conservation and archaeology, where reassembling fragmented

objects aids in research and preservation. To develop and evaluate our method, we

created a synthetic dataset that simulates real-world fragmentation using publicly

available artwork. The dataset captures irregular shapes, complex contours, and

varying fragment sizes typical of practical reconstruction scenarios.

Our method uses a 1D convolutional neural network with a U-Net-inspired ar-

chitecture to identify contour-based correspondences between fragments. These

local matches are then integrated through a global assembly algorithm, which in-

crementally merges clusters of pieces based on match confidence while addressing

potential inconsistencies. The proposed approach demonstrates strong perfor-

mance on both synthetic benchmarks and real-world examples, highlighting its

potential across a range of reconstruction tasks.
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Introduction

This thesis addresses the problem of assembling fragmented images, particularly

degraded pieces of artwork that have been broken into parts. This task can be

viewed as a generalization of the traditional jigsaw puzzle, a well-known game

in which an image is divided into many pieces, and the objective is to reconstruct

the original image by correctly assembling them.

The problem of image reassembly exists in various forms. In this thesis, we

focus exclusively on two-dimensional cases and do not address three-dimensional

reconstruction tasks. The image can be divided into rectangular or irregularly

shaped pieces. In typical jigsaw puzzles, the pieces are arranged in a regular grid

and feature distinctive interlocking tabs and slots along their edges, which help

secure the pieces during assembly. In contrast, this thesis focuses on the most

general form of the fragmented image assembly problem, where the pieces can

vary in size and shape and may be deformed or missing.

Although jigsaw puzzles are primarily associated with recreation, the ability

to reconstruct fragmented objects has practical importance in several domains.

In archaeology and art restoration, for example, there is a frequent need to re-

construct broken artifacts such as pottery, frescoes, or historical artworks. These

tasks are complicated by the fact that fragments are often damaged or incom-

plete. Computer-aided puzzle reconstruction not only reduces the time and effort

required but also makes it possible to restore objects that would be too fragile

or complex to handle manually.

Similar challenges also arise in forensic science. For instance, in 2011, DARPA

organized a competition [1] focused on reconstructing shredded documents,

illustrating the real-world relevance of this problem.

The motivation for this work arose from a collaboration with the National

Institute of Optics of the Italian National Research Council (CNR-INO) in Flo-

rence, where art restorers sought to reassemble a gelatin dry-plate photographic

negative from the archives of the Commissione per l’Edizione Nazionale dei

Manoscritti e dei disegni di Leonardo da Vinci (Commissione Vinciana). This

negative captures Cesare da Sesto’s painting Madonna with Saint John (1477-

1523), a work now held by the Museum Bonnat-Helleu in Bayonne (France) after
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Figure 1 Gelatin dry-plate photographic negative of Cesare da Sesto’s Madonna with
Saint John, fragmented into 14 irregular pieces.

having been briefly in the Louvre’s collection. The plate was fragmented into 14

irregularly shaped pieces—some deformed, others missing altogether—making

manual reconstruction both tedious and highly error-prone (Figure 1).

The primary objective of this work is to develop a machine-learning-based al-

gorithm capable of solving fragmented image reassembly problems, such as the re-

construction of the aforementioned negative. Accordingly, we address the general

case of jigsaw puzzles without constraints on piece shape. We also account

for the possibility of missing or damaged fragments. The only exception is puz-

zles containing pieces with holes, which are rare in real-world scenarios and not

considered in this study. Nevertheless, such pieces can be easily converted into

standard fragments by dividing them into smaller parts.

To support the development and evaluation of our method, we also designed

an algorithm for synthetic puzzle generation. This generator simulates real-world

fragmentation patterns and is used to create a dataset of synthetic puzzle problems.

The source images for these puzzles are real artworks, aligning well with our

focus on art restoration.

Approach
Computer-aided methods for solving jigsaw puzzles are typically divided into

two main stages. The first stage, referred to as local assembly, involves identifying

5



matches between pairs of pieces. The second stage, known as global assembly,

combines all the pieces to reconstruct the complete image. This thesis emphasizes

a machine-learning approach to local assembly while also addressing aspects

of global assembly.

Local assembly can be viewed as a specialized form of image registration,

except that the pieces do not overlap. Consequently, the only information that can

be used to align them is along their borders. The goal is to identify neighboring

pairs of pieces and to determine the transformations (rotation and translation)

required to align them.

Local assembly methods can be categorized as shape-based (apictorial),

content-based, or hybrid approaches. Traditional methods often rely on con-

tour matching to find potential matches, while modern approaches incorporate

machine learning. In this thesis, we propose a method using a convolutional

neural network to predict the similarity between the contours of two pieces. This

predicted similarity is then used to identify matching pairs.

For global assembly, a straightforward approach involves using a greedy algo-

rithm, iteratively combining matched pairs until the full image is reconstructed.

However, this approach becomes impractical when the number of false-positive

matches is high. Alternative methods employ advanced heuristics or treat the prob-

lem as a graph optimization task. Our solution adopts a greedy approach with

several enhancements to improve its robustness and performance.

Structure
The thesis is structured as follows:

Chapter 1 clearly defines the goals of the research. In Chapter 2, we review

the existing literature on jigsaw puzzle solving, exploring both local and global

assembly methods. We examine traditional image-processing techniques and

modern deep learning approaches.

Chapter 3 introduces the datasets used for evaluation. We review existing

datasets and also describe the creation of our synthetic dataset, designed to simu-

late real-world fragmented artworks.

The local assembly method is detailed in Chapter 4. This chapter focuses

on the neural network that we trained to find pairwise correspondences between

image fragments. We explain the architecture, training procedure, and evaluation

metrics, and provide the evaluation results of our method.

Chapter 5 focuses on the global assembly phase, describing how the identified

pair matches are used to reconstruct the complete image.

Chapter 6 offers a comparative analysis of our approach against the existing

PairingNet method [2]. This chapter highlights methodological differences and
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compares the evaluation results.

In Chapter 7, we present the results of the evaluation of our method, focusing

on both quantitative metrics and qualitative examples. The evaluation includes

both synthetic data and real-world examples, such as the dry-plate negative shown

in Figure 1.

Finally, Chapter 8 summarizes the key findings of the thesis and suggests

future research directions in the field of jigsaw puzzle reconstruction.
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Chapter 1

Goals

The main objective of this thesis is to develop a machine-learning-based approach

for solving jigsaw puzzle problems, with a particular emphasis on reconstructing

fragmented artworks. Our focus is on irregularly shaped fragments of varying

sizes, which may also be damaged, as seen in real-world applications such as art

restoration and archaeology. A key example is the fragmented dry-plate negative

shown in Figure 1. The goal is to design a solution capable of reassembling general

fragmented images without making assumptions about the shape of the fragments,

with the sole exception being that the fragments do not contain holes meant to be

filled by other fragments.

To achieve this, we define the following key objectives:

• Dataset Creation: Generate synthetic datasets that closely resemble real-

world fragmentation patterns, to be used for method development and

evaluation.

• Local Assembly: Design a machine-learning-based algorithm to accurately

determine whether two pieces belong together and develop a confidence

scoring mechanism to rank potential matches.

• Global Assembly: Investigate techniques for merging locally matched

pairs to reconstruct the complete image.

• Evaluation: Define suitable evaluation metrics to assess reconstruction

accuracy. Evaluate the algorithm both on synthetic datasets and real-world

cases, including the fragmented dry-plate negative.

By addressing these goals, this thesis aims to advance the field of automated

jigsaw puzzle reconstruction, contributing to applications in cultural heritage

preservation, forensic analysis, and other domains requiring the reassembly

of fragmented materials.
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Chapter 2

Related Work

In this chapter, we provide an overview of existing methods for solving jigsaw

puzzles, highlighting their strengths and limitations.

2.1 Local Assembly
In local assembly, the goal is to find the matching pairs of puzzle pieces. This task

can be solved using traditional image processing methods. In recent years, deep

learning approaches have also been explored.

2.1.1 Traditional Approach
Traditional methods for solving the local assembly of jigsaw puzzles fall into

three primary categories: shape-based, content-based, and hybrid approaches.

Shape-based approaches focus on analyzing the geometric properties of

the contours of puzzle pieces. Curve matching techniques, such as the turn-

ing function [3] or the Smith-Waterman algorithm [4, 5, 6], have been widely

employed. [7] utilized dynamic programming to identify the longest common

subsequence of contour features. Most shape-based methods also incorporate

polygonal approximations to simplify the representation of piece contours.

Content-based methods leverage image information from puzzle pieces. Typ-

ically, they calculate a measure of dissimilarity to identify neighboring pieces

by minimizing the difference in color along the shared edges [8]. [9] proposed

an automatic reassembly method using color histograms to match pieces of frag-

mented paintings and images.

Hybrid approaches combine geometric and content-based information to im-

prove the precision of reconstruction [10].
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2.1.2 Deep Learning Approach
Despite the extensive exploration of traditional methods, deep learning-based

approaches to jigsaw puzzle assembly are comparatively limited. Furthermore,

many of these methods are focused on specific puzzle types and thus not applicable

to the general jigsaw puzzle problem.

Puzzles with Rectangular Pieces

Research on square puzzle pieces, often organized in 3 × 3 grids, has been ex-

plored in several studies [11, 12, 13, 14, 15, 16, 17, 18, 19]. These problems are

inherently simpler due to the limited configurations of neighboring pieces. For

example, a neighbor can occupy one of four positions (top, bottom, left, or right),

and each position supports only four possible rotations, leading to 16 possible

configurations per pair. In contrast, general puzzle problems involve significantly

more potential configurations, complicating the matching process.

The authors of [16] and [11] trained convolutional neural networks (CNNs)

using triplet loss to classify whether two tiles should be adjacent. Their methods

included augmentations such as random shifting and masking of border pix-

els. Studies such as [12] and [13] focused on predicting positional relationships

between tiles in 3 × 3 grids using CNNs. Augmentations in these approaches

included the erosion and substitution of pieces that did not belong to the original

image. Generative models have also been explored in this context. For example,

[14] employed a generative adversarial network (GAN) to solve 3 × 3 puzzles.

In [18], a Monte Carlo tree search algorithm was used for image reassembly, al-

though this was also limited to the 3×3 grids. Additionally, [19] proposed the use

of a Siamese neural network with augmentations like erosion, again focusing

on square pieces. Reconstruction of shredded documents was addressed by [20],

using strong assumptions about piece shapes and employing self-supervised

learning and simulated shredding techniques.

Puzzles with General-Shaped Pieces

Some methods handling general-shape pieces use traditional methods for local

assembly, using the neural network only as a classifier of correct matches, which

reduces false positives and improves the performance of global assembly. The

first approaches used CNN as the backbone architecture for this classification

[21], followed by [22] where vision transformers were utilized. The authors

of this study also experimented with other backbone architectures, publishing

comprehensive comparisons.

A unique approach was presented by [23], who used diffusion models to di-

rectly solve the puzzle, bypassing the local assembly step. Their model was
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primarily designed for apictorial layout reconstruction and was tested on datasets

of room layouts and simple polygonal puzzles. Although effective for puzzles

with up to 20 pieces, the method’s high computational requirements and reliance

on transformers make it unsuitable for larger and more complex cases.

The most relevant work for our study is PairingNet [2], which introduced a

method to match contour points in pair of images. For each contour point, they

extracted two patches: one capturing image texture and the other that captures

the contour details. These patches were processed through a graph convolutional

network (GCN) to determine the matching contour points. Texture and contour

information were adaptively combined, allowing the model to prioritize the most

informative features. Unlike [21] and [22], which relied on manually designed con-

tour features, this method autonomously handles the contour matching task. This

is the approach upon which we build, making further improvements to enhance

the results.

2.2 Global Assembly
The global assembly task involves selecting the best set of matches from the local

assembly step to achieve a fully reconstructed image. Global assembly methods

typically employ greedy strategies, often enhanced by various optimizations.

In these approaches, a scoring function is used to rank potential matches, and

the matches are applied iteratively in the order of highest to lowest score, gradually

assembling the complete image [5]. To mitigate errors in the assembly process,

backtracking algorithms are frequently employed, allowing the system to explore

alternative configurations when facing ambiguities or misplacements. However,

this approach often leads to exponential computational complexity as the number

of possible piece arrangements grows, significantly impacting scalability for larger

puzzles.

Graph-based methods are another common approach to global assembly. In

these methods, puzzle pieces are represented as nodes, with potential matches

forming weighted edges between them. For example, in [7], a maximum spanning

tree algorithm was used to identify the optimal set of matches. Other strate-

gies involve the use of genetic algorithms to optimize the assembly process, as

demonstrated by [8] and [24].

Unlike local assembly, the use of deep learning for global assembly is relatively

uncommon. One potential approach was already mentioned in the previous

section [23], where a diffusion model was used for the entire end-to-end assembly

process.
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Chapter 3

Data

In this chapter, we present the datasets used for the image reassembly problem.

Our primary goal is to solve real-world problems, such as artwork reconstruction.

To be able to design and evaluate jigsaw puzzle reconstruction methods, we

require datasets that closely mimic real-world fragmentation patterns, capturing

the authentic complexity and variability of piece shapes encountered in practical

applications. Despite significant prior work in this domain, there remains a

scarcity of publicly available datasets that sufficiently meet our requirements.

These existing datasets are discussed in Section 3.2. As none of the available

datasets fully satisfied our needs, we created and published a synthetic dataset

along with the code used for its generation
1
.

3.1 Dataset Requirements
To effectively simulate real-world problems such as a fragmented negative shown

in Figure 1 and ensure the generalizability of our approach, the dataset must meet

the following criteria:

1. Irregular Structure: Pieces should not be organized in a regular grid, and

the number of their neighbors varies.

2. Variability in Shape and Size: Pieces can vary in size and shape, both

within a single image and across images.

3. Complex Borders: Borders between pieces should range from straight

lines to highly intricate curves.

4. Diverse Image Types: Images should include various formats such as

photographs, illustrations, and other artwork.

1https://github.com/mPiptova/cnn-piece-assemble
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3.2 Existing Datasets
Several datasets have been explored in the context of jigsaw puzzle research, but

most do not meet the requirements outlined in Section 3.1. The following section

evaluates these datasets against our established criteria.

3.2.1 JigsawNet Dataset
Authors of [21] introduced a synthetic dataset for their JigsawNet model.

2
. Figure

3.1 shows some examples from this dataset. Only the test set is available and it

consists of:

• 20 puzzles with 9 pieces each.

• 6 puzzles with 36 pieces each.

• 6 puzzles with 100 pieces each.

• 5 larger puzzles with approximately 400 pieces each.

While the dataset provides puzzles with curved borders, all pieces are of similar

size and they are organized in a regular grid. Furthermore, only photographs were

used as image sources. Therefore, this dataset fails to meet all of our specified

requirements. However, it is still suitable for evaluation of our approach, even

though we cannot directly compare our results with theirs, since their objective

is to classify piece matches (correct or incorrect) rather than finding them.

3.2.2 PairingNet Dataset
The PairingNet dataset, along with its generation code,

3
was introduced by [2]. It

consists of:

• 8196 synthetic fragments from 390 images.

• 320 real fragments from 34 printed images.

This dataset aligns more closely with our use case but is limited to photographs,

restricting the diversity of image types. However, it has several limitations. The

image quality is relatively low, primarily due to the use of the nearest-neighbor

interpolation method during random piece rotations. Second, it does not contain

complete images; instead, only a subset of pieces from each image is included,

2https://github.com/Lecanyu/JigsawNet
3https://github.com/zhourixin/PairingNet
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(a) 9 pieces. (b) 36 pieces.

(c) 100 pieces. (d) 400 pieces.

Figure 3.1 JigsawNet dataset examples [21].

which makes it impossible to fully reconstruct the original image (see Figure 3.2).

This design choice is based on the primary objective of [2] - not to reassemble

the original images but to identify neighboring pieces among fragments from

multiple images. As a result, this dataset is only suitable for evaluating local

assembly methods, which is detailed in Chapter 6.

3.2.3 Shredded Document Dataset
Another dataset, created by [25]

4
, focuses on shredded document reassembly. It

consists of 60 documents that have been synthetically divided into varying num-

bers of stripes to simulate shredding, along with three real shredded documents.

One example is shown in Figure 3.3. Since the fragments form regular rectangular

stripes and the source images are limited to documents, this dataset is not aligned

with our use case and is not suitable for our experiments.

4https://github.com/xmlyqing00/DocReassembly
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Figure 3.2 PairingNet dataset examples [2].

Figure 3.3 Example from the dataset of shredded documents [25].

3.3 Proposed Synthetic Dataset
Since existing datasets do not align adequately with this use case, we generated

our own synthetic dataset using publicly available images, for which we designed

and implemented a specialized splitting method to segment these images into

individual pieces with randomly generated shapes that satisfy our specific re-

quirements. The dataset includes diverse content such as drawings, paintings,

and photographs sourced from the National Gallery of Art
5
, which aligns well

with our objective of artwork reconstruction. Examples are shown in Figure 3.4.

The dataset is divided into training, validation, and test subsets. Images were

split into pieces of varying counts, as detailed in Table 3.1. For training and

5https://www.nga.gov/open-access-images.html
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Figure 3.4 Examples of images from our dataset.
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validation, piece counts include 50, 100, 200, and 400. For testing, we divided the

images into 10, 30, 50, or 100 pieces.

Subset Train Validation Test Total

10 0 0 30 30

30 0 0 10 10

50 377 67 10 454

100 10 3 5 18

200 5 1 0 6

400 3 1 0 4

Total 395 72 55 522

Table 3.1 Piece counts for each subset of our dataset.

3.3.1 Splitting Algorithm for Synthetic Dataset Generation
Our splitting algorithm ensures that the dataset meets the requirements outlined

in Section 3.1 and aims to generate fragmented images as close to real-world

examples as possible. The process involves:

1. Random Curve Generation (Figure 3.5a)

• Straight lines are drawn across the image.

• Points are regularly sampled along these lines, and their position is

perturbed using Gaussian noise.

• The generated points are connected using a cubic spline interpolation,

resulting in a smooth curve that passes through all the points. The

spline constructs a piecewise cubic function with continuous first and

second derivatives, ensuring smooth transitions at the joints.

2. Region Merging (Figures 3.5b and 3.5c)

• The curves generated in step 1 are used to segment the image into

regions.

• The regions are merged iteratively to achieve the desired number

of pieces and to eliminate the ones that are too small.

– In each iteration, the region with the smallest area is selected.

– The selected region is merged with its neighbor with the largest

common border.
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(a) Random curves. (b) Regions before merging. (c) Regions after merging.

Figure 3.5 Image division process used in our splitting algorithm. First, we generate
random curves (a), then we use them to divide the image into regions (b), and finally
merge regions to obtain the desired number of pieces and eliminate regions that are too
small (c).

3. Piece Extraction

• Individual piece images are extracted from the generated regions, and

each piece is randomly rotated.

• The transformation needed to assemble the piece back together is

computed.

• Optionally, each piece is augmented as described in Section 3.3.2.

The configurable parameters of the algorithm include the desired number

of pieces, the number of curves, the sampling density of points, and the noise

intensity. Examples of generated images are shown in Figure 3.6.

3.3.2 Augmentations
Our research aims to simulate real conditions encountered in actual reconstruction

scenarios. When objects fragment in the physical world, the resulting pieces

undergo environmental interactions and alterations that can significantly impact

their characteristics and spatial relationships. This can lead to eroded boundaries

and changes in the color of some fragments. Even in conventional jigsaw puzzles,

small gaps often appear between pieces due to imperfections during the cutting

process. To mimic these distortions and enhance the robustness of our models,

we experimented with two types of augmentations.

• Erosion: Simulates physical boundary erosion by removing pixels along

piece edges (Figures 3.7 and 3.8b).
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Figure 3.6 Examples of our synthetic fragmented images.
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Figure 3.7 Visualization of erosion effect on a piece. Parts highlighted in red were
removed.

• Color Augmentation: We randomly alter contrast, saturation, hue, and

value to simulate diverse environmental lighting conditions and weathering

effects on fragment surfaces (Figure 3.8c).

3.4 Data Format
After dividing an image into pieces, we store the data in a structured format to

facilitate evaluation. Each puzzle is represented as follows:

1. Piece Images: Each puzzle piece is saved as an individual image, containing

the visual content of the fragment (Figure 3.9a).

2. Piece Masks: For each piece, a corresponding binary mask is provided to

facilitate boundary extraction (Figure 3.9b).

3. Assembly Metadata:

• A list of piece transformations (rotation and translation) needed for

correct assembly.

• A list of neighboring piece pairs.

This information is saved in a JSON file, an example of which is shown below:

{
"transformed_pieces": [
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(a) Original image. (b) Image with eroded pieces. (c) Color augmented image.

Figure 3.8 Example of augmentations used in our synthetic dataset. The first image
shows the original non-augmented image, the second image shows the image with
eroded pieces, and the third image shows the color-augmented version.

{
"id": "000",
"transformation": {

"rotation_angle": 1.1432936781669358,
"translation": [

-182.21601617933865,
400.6434610185635

]
}

},
{

"id": "001",
"transformation": {

"rotation_angle": 2.4872918104879265,
"translation": [

31.136386101595804,
1177.813497118722

]
}

},
...

],
"neighbors": [

["001", "002"], [ "008", "007"], ...
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(a) Example of piece. (b) Piece mask.

Figure 3.9 Example of one piece as stored in our synthetic dataset. Figure (a) shows
the image, while (b) shows the binary mask.

]
}
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Chapter 4

Local Assembly

The objective of local assembly is to identify a viable set of matches between puzzle

pieces, determining both which fragments should form the pairs and the exact

spatial transformations required for their proper alignment. To achieve this,

we train a neural network capable of taking two pieces as input and predicting

whether they share a common border and, if so, how to align them. This model

is applied to all possible pairs of pieces in the dataset to produce the tentative

matches.

This chapter describes the architecture of our model, the training process,

the method for extracting matches from the model’s output, and the evaluation

metrics used to assess its performance.

4.1 Overview
Our model predicts whether pairs of pixels along the boundaries of two input

pieces correspond, thereby determining the transformation necessary for their

proper alignment. The similarity between pairs of contour pixels is represented

as a similarity matrix. The workflow for generating and processing these matrices

during training and prediction is illustrated in Figure 4.1 and described in detail

in this section.

Consider two pieces, Pk and Pl, with contours represented as sequences

of points (ck
0, . . . , ck

n−1) and (cl
0, . . . , cl

m−1), respectively. The model outputs a sim-

ilarity matrix Mkl ∈ (0, 1)n×m
, where Mkl

ij represents the probability that contour

points ck
i of Pk and cl

j of Pl are matching.

To clarify terminology, this work distinguishes between two levels of corre-

spondences:

1. Piece-level correspondence: Indicates whether two pieces share a com-

mon border and specifies the transformation required to align them.
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Thresholded Similarity Matrix

Detected Diagonal Line

Predicted Similarity Matrix

Ground Truth Similarity Matrix 

Reconstructed Match

Ground Truth Match

PredictionTraining Target

Pair of Pieces

Figure 4.1 Training and prediction workflow for pixel-level contour matching. Given
a pair of puzzle pieces Pk and Pl, the network predicts a similarity matrix Mkl, indicating
matching probabilities between contour points. The predicted matrix is thresholded and
processed to extract a diagonal line, which determines the predicted alignment. The final
result is a reconstructed match of the two pieces. The ground truth similarity matrix
Gkl, used as the training target, is computed from known alignments.
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Figure 4.2 Example of patch of size w × w extracted around a contour point.

2. Pixel-level correspondence: Identifies which pixels on the contours

of two pieces match when correctly aligned.

Our approach uses pixel-level correspondences to infer piece-level correspon-

dences, which is our primary focus. However, pixel-level metrics are also valuable

for model evaluation.

The goal of the model is to predict pixel-level correspondences; therefore,

we use a representation of contour points as its input. Following [2], we extract

a patch of size w×w around each contour point (Figure 4.2) and flatten it into a 1D

vector, which serves as the input contour point’s representation. These feature

vectors are stacked to form a 2D tensor of shape (n, DF ), where n is the number

of contour points and feature dimension DF = w2 · C (with C representing

the number of image channels). This process is illustrated in Figure 4.3.

The input tensor is processed through a 1D convolutional neural network

(CNN) with a U-Net-like architecture. The goal is to find a suitable representation

of each contour point, which can then be used to measure the similarity between

the contours of two pieces. The network’s output is a tensor of shape (n, DE),
where DE is the dimensionality of the embedding space. The rows of this tensor,

referred to as contour embeddings, capture the features of individual contour

points. For the i-th piece, we denote the matrix of contour embeddings as Ei
, and

ei
j represents the embedding of the j-th contour point. Details of the network

architecture are provided in Section 4.2.

n

DF

n

DE

Image patches Feature vectors Embedding vectors

Neural
Network

Figure 4.3 The process of obtaining the embedding vectors from image patches.

Given embeddings Ek
and El

for pieces Pk and Pl, we compute the similarity
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(a) (b) (c)

Figure 4.4 Examples of ground truth matches between puzzle pieces (top row) and
the corresponding ground truth similarity matrices (bottom row). The red curves indicate
contour segments that align between the matched pieces, which are reflected as white
lines in the similarity matrices.

matrix Mkl = σ(Ek · (El)⊤), where Mkl
ij is the dot product of of corresponding

contour embeddings ek
i and el

j , scaled using the sigmoid function σ to obtain

values in the range (0, 1). This serves as a similarity measure for contour points.

The ground truth matrix Gkl ∈ {0, 1}n×m
, which represents the known

mutual relationships between pieces k and l, is defined as follows:

Gkl
ij =

⎧⎪⎪⎨⎪⎪⎩
1 if dist(ck

i , cl
j) < t

∧
(︂
j = argminodist(ck

i , cl
o) ∨ i = argminodist(ck

o , cl
j)

)︂
0 otherwise

Here, t is a threshold, and dist(ck
i , cl

j) is the Euclidean distance between

correctly aligned contour points ck
i and cl

j .

Ideally, all 1s in Gkl
form a diagonal line, but due to inaccuracies from image

manipulation, this is rarely the case. Examples of ground truth matrices are shown

in Figure 4.4.
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Ground Truth Matrices Properties
There are several important observations about ground truth matrices, which we

have to address in the model design:

• Discontinuities in the diagonal line: Due to ambiguities in pixel-level

correspondences, exact matches are often unrealistic. To address this, di-

lation is applied to the ground truth matrix to thicken the diagonal line,

thereby accommodating inaccuracies and ambiguities.

• Cyclic boundary conditions: The contour points of a piece form a closed

cycle, and the starting point is arbitrary. This results in diagonal lines that

may wrap around the boundaries of the matrix, as shown in Figure 4.4a.

The network architecture must account for this cyclic nature, as discussed

in the next section.

• Directionality: Diagonal lines in the ground truth matrix G typically

slope from bottom-left to top-right, as contours are extracted in a clockwise

direction. This introduces asymmetry in the data, as shown in Figure

4.5. If two points c1
i and c1

j match with c2
k and c2

l , respectively, the order

of indices differs: i < j implies k > l. To mitigate this, we can either reverse

the input contours and ground truth matrices or train separate models for

each direction. These solutions are explored in the following section.

Figure 4.5 Illustration of the impact of directionality on contour matching. When
the contours of both pieces are traversed in the same direction, the matching border
segments are processed in a clockwise direction for one piece and in a counter-clockwise
direction for the other.

4.2 Model Architecture
As described in the previous section, the model takes as an input contour features

and for each point of the contour it produces an embedding vector. This process
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is illustrated in Figure 4.3. We can then compare these embeddings of contours

of different pieces and produce a similarity matrix, which tells us how likely it is

for contour points to match.

The neural network used in this work is a 1D convolutional U-Net-like archi-

tecture [26], shown in Figure 4.6. The U-Net architecture is a deep learning model

designed primarily for image segmentation tasks. Similarly to segmentation tasks,

we leverage its ability to combine low-level features with high-level contextual

information to extract meaningful representations for each contour point. These

representations capture essential details that can be used to measure similarity

between the contours of different pieces.

The network follows an encoder-decoder structure with symmetric contract-

ing and expanding paths. The contracting path extracts increasingly abstract

feature representations through convolutional and pooling operations. The ex-

panding path progressively reconstructs the output resolution while integrating

features from the contracting path via skip connections. The 1D version of this

architecture processes one-dimensional data, making it ideal for our problem

involving contour embeddings.

 conv, BatchNorm, ReLU

1D max pool

transposed conv

copy and concatenate

input
features

output
embeddings

intermediate layer output
with shape 

Figure 4.6 Model architecture.

4.2.1 Encoder
The encoder consists of multiple convolutional blocks, each containing the fol-

lowing operations:

• 1D Convolution: Extracts features from the input tensor using small,

learnable filters. Kernel size is configurable, with 3 as a common choice.
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• Batch Normalization: Normalizes the activations to improve training

stability.

• Activation (ReLU): Applies a non-linear activation function to introduce

non-linearity into the model.

• 1D Max Pooling: Down-samples the data, reducing its resolution while

retaining essential features.

These blocks successively reduce the spatial resolution of the input while

increasing the number of feature channels, thereby learning higher-level abstrac-

tions at each stage.

4.2.2 Decoder
The decoder mirrors the encoder with the following operations:

• Transposed Convolution: Performs up-sampling to increase the resolu-

tion of the feature maps.

• Skip Connections: Copies feature maps from corresponding layers

in the encoder and concatenates them with the up-sampled feature maps

in the decoder, providing a direct pathway for low-level spatial features

to flow from the encoder to the decoder. This improves the model’s ability

to reconstruct fine-grained details.

• Convolution, Batch Normalization and Activation (ReLU): Refines

the up-sampled features to produce the final output. The last layer uses no

activation function, as its output is used directly as the output of the model.

4.2.3 Cyclic Boundary Condition
As discussed in the previous section, the contour points of a piece form a closed

cycle, and the starting point for extracting these points is arbitrary. This is

illustrated in Figure 4.7. The network architecture must account for this cyclic

nature to ensure consistent processing of contours. Additionally, different pieces

have contours of varying lengths, which must also be addressed.

One potential solution is to leverage cyclic padding, a feature supported

by many implementations of convolutional layers. However, this approach has

a significant limitation: contours of different lengths cannot be processed in

a single batch. Using cyclic padding would restrict the batch size to 1, which is

computationally inefficient and undesirable.
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Contour featuresContour points

Figure 4.7 Contour point features. Points c0 and cN−1 are spatially close to each other,
but the corresponding rows in the feature matrix are not.

B

Figure 4.8 Application of cyclic padding to a batch of training data. Black regions
mark the zero-padded regions. B denotes the batch size and nmax is the maximum length
of a contour in the batch. Here, the padding size is 2.

An alternative solution is to use convolutional layers without padding and

apply cyclic padding of an appropriate size (determined by the depth of the net-

work) to the contours beforehand, as shown in Figure 4.8. This method allows

for processing multiple contours in a single batch by using zero padding to match

their shapes. It is crucial to mask out the zero-padded regions when calculating

the loss. This is the approach adopted in our implementation.

4.2.4 Handling Directionality
Another issue, as discussed in the previous section, is the directionality of the con-

tours. Contours can be traversed in either a clockwise or counter-clockwise
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direction, which affects the embeddings generated by the network.

One straightforward solution is to process one contour in the clockwise direc-

tion and the other in the counter-clockwise direction. In this case, both contours

are passed through the same model to generate their respective embeddings.

An alternative approach is to use two separate networks with the same ar-

chitecture, where one processes contours in a clockwise direction and the other

in a counter-clockwise direction. However, our experiments did not show a signifi-

cant improvement over the single-network approach. Given that the dual-network

approach involves a higher number of parameters and, consequently, requires

more computational resources, we opted for the single-network approach instead.

In both approaches, two sets of embeddings are generated for each piece:

1. For the single-network method, embeddings are produced for contours

traversed in both clockwise and counter-clockwise directions using the same

model.

2. For the dual-network method, each network independently generates em-

beddings for its designated direction.

4.3 Match Reconstruction
Given two pieces Pk and Pl with contours (ck

0, ck
1, . . . , ck

n) and (cl
0, cl

1, . . . , cl
m),

the embedding model produces embedding matrices Ek
and El

. Using these

embeddings, we compute the similarity matrix Mkl = σ(Ek · (El)⊤), where σ is

the element-wise sigmoid function. Each element Mkl
ij represents the similarity

between contour points ck
i and cl

j . This process is illustrated in Figure 4.9.

An example of the similarity matrix is shown in Figure 4.10. The matrix

exhibits a strong diagonal line corresponding to matching contour points and

weaker lines representing less probable matches. The objective is to identify

the most prominent diagonal line and use it to estimate the match between

the two pieces. This process is described in the next section.

4.3.1 Reconstruction Steps
This section outlines the steps required to reconstruct the match between two

pieces Pk and Pl from the similarity matrix Mkl
. These steps include thresholding,

detecting the strongest diagonal line, and estimating the transformation.

Thresholding In the first step, low-similarity correspondences are removed

by applying a threshold to Mkl
. The result, as shown in Figure 4.10d, retains only

high-confidence matches.
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m

n

m

n

Figure 4.9 Computation of the similarity matrix from contour embeddings. Ek and
El are the embedding matrices for pieces Pk and Pl, respectively. The resulting product
yields the similarity matrix Mkl, prior to the application of the sigmoid function.

Diagonal Line Detection The next step is to detect the longest diagonal line

in the thresholded matrix. We use the Hough transform to achieve this, which

allows restricting the search to specific angles (e.g., (π/6, π/3)). Only the most

dominant lines of sufficient length are considered valid matches. If no sufficiently

long diagonal line is detected, the two pieces are classified as non-neighbors.

Due to the cyclic nature of the similarity matrix Mkl
, diagonal lines may

extend beyond the matrix boundaries. To address this, the matrix is tiled in both

dimensions, ensuring continuity of the diagonal lines for detection (see Figure

4.11).

Extracting Correspondences Once a diagonal line is detected, the correspond-

ing contour points are extracted as a list of tuples:

((i1, j1), (i2, j2), . . . , (inpixel , jnpixel)),

where npixel is the number of detected correspondences and (ik, jk) are the indices

of matching contour points.

Estimating Transformation To reconstruct the match, we compute the rigid

transformation T (a combination of rotation and translation) that maps the con-

tour points (ck
i1 , ck

i2 , . . . , ck
inpixel

) to (cl
j1 , cl

j2 , . . . , cl
jnpixel

). This transformation is

expressed as:

T =

⎡⎢⎣cos(θ) − sin(θ) tx

sin(θ) cos(θ) ty

0 0 1

⎤⎥⎦ ,
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(a) Ground truth match. (b) Ground truth similarity matrix Gkl.

(c) Similarity matrix Mkl. (d) Matrix Mkl after thresholding.

Figure 4.10 Predicted correspondence between pieces Pk and Pl. (a) shows the match-
ing pieces, (b) illustrates the ground truth similarity matrix Gkl, (c) displays the predicted
similarity matrix Mkl, and (d) shows the predicted matrix after thresholding.
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Figure 4.11 Example of tiling for line detection.

where θ is the rotation angle and (tx, ty) is the translation vector. The mapping is

given by: ⎡⎢⎢⎢⎢⎢⎣
cl

j1

cl
j2
.
.
.

cl
jnpixel

⎤⎥⎥⎥⎥⎥⎦
⊤

= T

⎡⎢⎢⎢⎢⎢⎣
ck

i1

ck
i2
.
.
.

ck
inpixel

⎤⎥⎥⎥⎥⎥⎦
⊤

.

Since an exact solution is unlikely (due to noise and outliers), the RANSAC

[27] algorithm is used to robustly estimate T. The transformation from RANSAC

serves as the initial guess for fine-tuning using the Iterative Closest Point (ICP)[28,

29] algorithm, which refines the alignment.

4.3.2 Confidence Score
It is important to quantify the quality of a match—that is, the certainty that

the given two pieces truly belong together and are correctly aligned. We refer

to this measure of match quality as the confidence score.
A reliable confidence score is essential for global assembly, as most existing

methods depend on it, particularly when ranking matches in a greedy approach.

Given a match (i.e., two pieces and the transformation aligning them), various

factors can be considered to compute the confidence score, such as the length

of the shared border, the proximity of matching contour points, and the color

difference between adjacent regions. These hand-crafted metrics often require

extensive hyperparameter tuning and can be challenging to design effectively.
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Threshold Recall wl AUC-ROC

0.5 0.8609 0.3 0.9957

0.6 0.8632 0.3 0.9957

0.7 0.8529 0.3 0.9945

0.8 0.8368 0.3 0.9946

0.9 0.7621 0.3 0.9945

Table 4.1 Best weight wl and AUC-ROC for different values of threshold for model
trained on non-augmented dataset.

To address this, we compute the confidence score directly from the model’s

output. This approach provides a robust proxy for match quality while eliminating

the need for manual tuning.

The confidence score for match between pieces Pk and Pl is computed from

the similarity matrix Mkl
. From the estimated match, we extract contour point

pairs using the same method as for the ground truth matrix. The confidence values

for individual pairs are taken directly from Mkl
and aggregated by computing

their mean, yielding a single confidence value per match.

Additionally, our experiments indicate that incorporating match length (i.e.,

the number of corresponding point pairs) improves the score’s reliability. This

adjustment assigns higher scores to longer matches while penalizing weak con-

nections where pieces only touch by a few pixels.

The total score for a match is then given by:

S(k, l) =
∑︁

i,j∈pairsP (k,l) Mkl
ij

|pairsP (k, l)| · |pairsP (k, l)|wl
(4.1)

where pairsP (k, l) represents the set of matching contour point pairs for pieces

Pk and Pl, Mkl
is the similarity matrix, and wl is a hyperparameter weighting the

match length.

To assess the impact of wl, we use the area under the receiver operating

characteristic curve (AUC-ROC), which measures how well the score distinguishes

between good and bad matches. The effect of different values of wl on ROC curve

and score histograms is shown in Figure 4.12. We evaluated different values of wl

and similarity matrix thresholds using synthetic puzzle problems that were not

part of the training or test data.

The tested values for wl were {0, 0.1, 0.2, . . . , 1}, and for the threshold,

{0.5, 0.6, 0.7, 0.8, 0.9}. Evaluations were conducted for both a model trained

on a non-augmented dataset (Table 4.1) and a model trained with eroded pieces

(Table 4.2).
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Figure 4.12 Receiver operating characteristic curves and histograms of resulting scores
for different values of wl. Threshold is set to 0.7. Weight wl = 0.3 is the choice with
the highest AUC-ROC. The y-axis is logarithmically scaled to maintain a consistent
range across all three plots.

Threshold Recall wl AUC-ROC

0.5 0.7575 0.4 0.9840

0.6 0.7391 0.4 0.9819

0.7 0.6977 0.5 0.9833

0.8 0.6138 0.5 0.9853

0.9 0.4402 0.6 0.9745

Table 4.2 Best weight wl and AUC-ROC for different values of threshold for model
trained on dataset with simulated erosion.
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4.4 Training
During the training, we obtain the similarity matrix M in the same way as de-

scribed in Section 4.3. It is important to note that when using a batch size larger

than 1, the respective embeddings and the matrix contain padding. Therefore,

only the unpadded elements of the matrix are valid, and the rest should be masked

out.

The task can be viewed as a set of n ·m binary classifications, where for each

pair of contour points, we predict whether they correspond. For this reason, we

use Binary Cross Entropy (BCE) as the loss function:

LBCE = − 1
N

b∑︂
k=1

nk∑︂
i=1

mk∑︂
j=1

[︂
Gk

ij log Mk
ij + (1−Gk

ij) log(1−Mk
ij)

]︂
, (4.2)

where b represents the batch size, Gk
and Mk

correspond to the ground truth

and predicted similarity matrices of the k-th sample, respectively, nk and mk are

the dimensions of those matrices and N = ∑︁
k nkmk This is the basic version

of the loss function, without any masking or weighting.

The simplified pseudocode of the training loop is shown in Algorithm 1. For all

experiments, we use the Adam optimizer [30] with a learning rate of 0.0001.

Algorithm 1 Training loop. This pseudocode uses two separate networks for each
input, as described in Section 4.2.4. For the case where only one network is used, set
network2 = network1. Here, DF and DE are the dimensions of the input and output
embeddings, Fk and Fl are the input features, and Gkl is the ground truth matrix.

1: network1 ← EmbeddingNetwork(DF , DE)
2: network2 ← EmbeddingNetwork(DF , DE)
3: for epoch← 1 to epochs do
4: for each (Fk, Fl, G) in batches do
5: Ek ← network1(Fk)
6: El ← network2(reverse(Fl))
7: Mkl ← σ(Ek · (El)⊤)
8: L← BCE(Mkl, G)

9: L←Mask(L, Gkl
)

10: backward(L)

11: end for
12: end for
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4.4.1 Dealing with Class Imbalance
In typical jigsaw puzzle problems, there are significantly more pairs of pieces

that are not touching than those that do. For example, in a grid-organized jigsaw

puzzle with an n × n grid, there are 2n(n − 1) touching pairs of pieces, while

the total number of piece pairs is

(︂
n2

2

)︂
= n2(n2−1)

2 .

Similarly, for two neighboring pieces, there are many more pairs of contour

points that do not match compared to those that do. For pieces with contour

lengths n and m, sharing a border of length b, there are n × m contour point

pairs, of which only approximately c · b are labeled as matching. Here, c is a small

constant depending on the method used to construct the ground truth matrix.

In machine learning, it is well known that models can overfit to the majority

class in imbalanced datasets. In our case, there are two levels of imbalance:

1. Piece-level imbalance: Between touching and non-touching pieces.

2. Pixel-level imbalance: Between corresponding and non-corresponding

contour points.

Both must be addressed to train the model effectively.

Piece-Level Class Imbalance

Our dataset includes only neighboring pairs of pieces, but generating negative

pairs during training is straightforward, as the ground truth similarity matrix

for non-touching pieces is entirely zeros. In our experiments, we randomly draw

pieces from the dataset, without restricting pairs to be from the same image.

Including explicitly negative pairs from the same image did not yield significant

improvements in our experiments.

The key consideration is the ratio of negative pairs to add. If too few negative

pairs are used, the model may overfit to finding correspondences between similarly

looking pieces, producing random outputs for dissimilar pairs. Conversely, a high

ratio of negative pairs slows down training but does not harm performance if

pixel-level imbalance is handled correctly.

Pixel-Level Class Imbalance

Pixel-level imbalance can be addressed directly in the loss function, with two

common approaches:

1. Assigning higher weights to positive examples and lower weights to nega-

tive examples. This approach uses all available data but requires knowledge

of the initial class ratios to fine-tune weights effectively.
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2. Using a masking strategy in the loss function. Positive pairs are retained,

while a predefined proportion of negative pairs is randomly masked out.

This allows precise control of the positive-to-negative ratio but may lead

to slower training due to unused data during backpropagation. Handling

batches with only negative examples can also be problematic.

We primarily use the first approach but have also experimented with the

second. The results of our experiments are presented in Appendix A.

4.5 Evaluation Methodology
When solving the jigsaw puzzle problem, the primary goal is to determine whether

the entire image can be accurately assembled or, at the very least, how much of it

can be reconstructed. It is also important to evaluate the quality of local assembly

independently, so that different methods can be compared without the influence

of the global assembly process.

4.5.1 Standard Metrics
The objective of local assembly is to produce a set of matches from the complete

set of pieces. To evaluate this, we use standard metrics:

• Precision: The ratio of correct matches to all predicted matches.

• Recall: The ratio of correct matches to all ground truth matches.

• F1 Score: The harmonic mean of precision and recall.

While these metrics provide valuable insights, they should not be the sole

basis for comparison. For instance, if the global assembly method is particularly

good at handling false positives, precision becomes less important. Similarly, it is

not always necessary to find every match to correctly reconstruct the image.

If we represent the jigsaw puzzle as a planar graph, where edges correspond

to ground truth matches, reconstructing the image requires finding at least a span-

ning tree of this graph. For a puzzle with m pieces, each spanning tree contains

m − 1 edges. According to Euler’s formula, the maximum number of edges

in a planar graph is 3m − 6. Thus, the theoretical lower bound on recall for

assembling the image is:

m− 1
3m− 6 −−−→m→∞

1
3 .
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For a grid-organized puzzle with m = n2
pieces and 2n(n−1) neighbor pairs,

the lower bound becomes:

n2 − 1
2n2 − 2 −−−→m→∞

1
2 .

In cases where there are m− 1 neighbor pairs (e.g., images split into parallel

strips), every match must be identified to reconstruct the entire image.

This means that puzzles with recall as low as 0.3 can, in theory, be correctly

assembled if the identified matches form a spanning tree. However, recall compar-

isons across puzzles with different structures are not meaningful, as the structural

properties significantly affect the recall threshold required for successful assembly.

The specific location of identified matches is often more critical than their

quantity. For example, consider an image where one half consists of a textureless

sky and the other half has a detailed background:

• A method that perfectly reconstructs the textured part but finds no matches

in the sky achieves a recall of 0.5, yet global assembly becomes impossible.

• Another method that identifies 50% of matches in both the sky and textured

areas also achieves a recall of 0.5, but it enables partial or complete assembly.

This highlights that recall alone does not fully capture the practical utility

of local assembly for global reconstruction.

4.5.2 Balancing Precision and Recall
As in most classification tasks, there is a trade-off between precision and recall.

In our case, this trade-off can be controlled by adjusting the weights in the loss

function, as described in Section 4.4.1. Determining the optimal balance depends

on the global assembly method:

• Greedy methods are sensitive to false positives but do not rely on redundant

matches. In theory, matches forming a spanning tree are sufficient for full

assembly. Therefore, prioritizing precision over recall may be more effective.

• Some graph-based methods rely on detecting consistent cycles in the graph

formed by detected matches, making recall more important.

This dependency complicates direct comparisons of local assembly methods

without considering the global assembly process.
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4.5.3 Additional Metrics
To address these challenges, we propose evaluating whether it is theoretically

possible to assemble the entire image given the set of matches, independent

of the global assembly method. Two metrics are defined:

• Largest Connected Component (ELCC): the ratio of the number of pieces

in the largest connected component to the total number of pieces, con-

sidering only correctly classified matches. This metric reflects the extent

to which the image could be reconstructed using an ideal global assembly

method without errors.

• Fully Assembled (EFA): A binary metric indicating whether the entire

image can be reconstructed—i.e., whether the largest connected component

as defined above includes all puzzle pieces.

Both metrics provide a practical perspective on the effectiveness of local

assembly, offering insights that complement traditional metrics such as precision

and recall.

4.6 Results
In Table 4.3, we present a selection of our evaluation results; the full table is

available in Appendix D.
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Train

Dataset

Test Dataset P R F1 Acc EFA ELCC

E
r
o

d
e
d

Eroded 0.2497 0.7584 0.3628 0.6838 0.5542 0.9701

Non-Augmented 0.3150 0.8498 0.4445 0.6900 0.8292 0.9925

JigsawNet 0.2569 0.9900 0.3541 0.7232 1.0000 1.0000

All 0.2739 0.8661 0.3871 0.6990 0.7944 0.9875

N
o

n
-
A

u
g

m
e
n

t
e
d

Eroded 0.2851 0.7181 0.4034 0.7457 0.4806 0.9545

Non-Augmented 0.3604 0.8725 0.5021 0.7991 0.9590 0.9985

JigsawNet 0.3215 0.9931 0.4348 0.8240 1.0000 1.0000

All 0.3223 0.8612 0.4467 0.7896 0.8132 0.9843

Table 4.3 Evaluation results of our model. We compare models trained on our synthetic
datasets—with and without erosion augmentation—and evaluate their performance also
on the JigsawNet dataset [21].

42



Chapter 5

Global Assembly

Global assembly represents the second phase of jigsaw puzzle solving, where we

use detected piece matches to reconstruct the complete image. In ideal conditions,

where all piece matches are correct and no false positives exist, we can solve this

using a simple greedy approach that iteratively applies matches until the image

is complete.

In real-world scenarios, however, false matches can occur. A common solution

to this problem is backtracking, which systematically explores different match

combinations to find the correct solution. The main drawback of backtracking

is that if an error occurs early in the assembly process, it requires exploring

a large number of possible configurations. To address this, we introduce several

improvements to the greedy approach, drawing inspiration from evolutionary

algorithms. A high-level overview of our approach is shown in Figure 5.1.

During the assembly process, we maintain a dynamic set of clusters of pieces,

C, where each cluster represents a partially assembled image.

The process begins by identifying candidate matches and ranking them based

on confidence scores. These matches are then represented as a graph, where

cycles with consistent transformations are identified and considered “trusted.”

This provides an initial set of piece clusters. Next, the highest-ranked unused

match is iteratively incorporated into existing clusters, followed by merging

clusters that share common pieces. Each of these steps is detailed in the following

sections.

The algorithm terminates when at least one of the following conditions is

met:

• Set of cluster is a single cluster containing all pieces, indicating successful

reconstruction.

• All candidate matches have been processed.
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Find matches

Detect trusted
clusters

Use new match

Is assembled?

No

Recombine clusters

Yes End

Figure 5.1 High-level overview of our global assembly algorithm.

• A predefined iteration limit is reached.

• No changes occur in the cluster set for a fixed number of iterations (deter-

mined by a patience parameter).

The algorithm outputs a set of clusters, where each cluster consists of a set of

pieces with their respective transformations. In the ideal case, where the entire im-

age is successfully reconstructed, the algorithm yields a single cluster containing

all pieces.

5.1 Trusted Clusters
Determining the correctness of a match based solely on its confidence score is not

possible. However, during the assembly process, if a match aligns consistently

with others, it can often be assumed to be correct.

To take advantage of this, we introduce the concept of trusted clusters.
A trusted cluster is considered a reliable partial solution, and all subsequent

operations must maintain consistency with it. This approach allows us to system-

atically discard unlikely assembly paths and focus computational efforts on more

promising solutions.

Before incorporating a new match, we verify whether it conflicts with any

trusted clusters. If a conflict arises, the match is discarded, and the next best
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match is considered. Similarly, if merging two clusters results in an inconsistency

with an existing trusted cluster, the merge is rejected.

Trusted clusters are identified using two methods: they are either found

before the assembly process (cycle-based trusted clusters) or dynamically during

assembly.

Cycle-based Trusted Clusters
This method is inspired by graph-based global assembly techniques. We construct

a graph of detected matches and search for short cycles, typically of length 3 or 4,

as longer cycles would be computationally expensive. To further limit complexity,

only the top 10n highest-scoring matches are considered, where n is the total

number of pieces.

For each detected cycle, we verify whether the transformations between

pieces are mutually consistent. If so, the cycle is assumed to be correct, and

the corresponding pieces form a trusted cluster, serving as an initial foundation

for the assembly process.

Trusted Clusters Identified During Assembly
During the assembly process, if a new match is introduced and it corresponds

to a match already present in an existing cluster, it is marked as trusted and added

to the set of trusted clusters.

5.2 Cluster Merging
When two clusters share common pieces due to new matches, a merging procedure

is triggered. This consists of:

1. Identification of all common pieces between clusters

2. Computation of the alignment transformation

3. Cluster merging

During cluster merging, two types of inconsistencies may arise, indicating

incorrect piece placement:

• Position Inconsistencies: These occur when clusters share multiple com-

mon pieces, but these pieces don’t align properly between clusters.
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• Piece Overlap: This happens when merged pieces occupy the same space.

In our implementation, we allow a some level of overlap tolerance to account

for small errors that accumulate during assembly.

Traditional backtracking would return to a previous state when encountering

errors and try different matches. Our approach instead aims to correct errors as

they appear during merging and continues with the next match. This approach

provides an effective balance between computational efficiency and accuracy

while maintaining robustness against matching errors.

If inconsistencies arise, one cluster is chosen as the reference, typically at ran-

dom unless a preferred cluster is specified (e.g., a newly introduced match or

a trusted cluster). The transformations of the reference cluster are preserved,

while conflicting elements from the other cluster are discarded (see Figure 5.2). If

the resulting cluster doesn’t form a single connected component, only the largest

connected component is retained.

(a) First cluster (b) Second cluster (c) Merged clusters if trans-
formations from cluster (a)
were used

.

Figure 5.2 Merging of inconsistent clusters. (a) and (b) represent two clusters with
inconsistencies, as one piece is placed differently in each. (c) shows the result of merging
these clusters, with (a) selected as the reference cluster for the merging process, which
determined the position of the conflicting piece.

5.3 Clusters Selection
At each step of the algorithm, we maintain a set of clusters that represent partial

reconstructions of the image. These clusters may overlap, meaning a piece can

belong to multiple clusters in C. This occurs when two clusters share common

pieces but are inconsistent, leading to a lower overall cluster score if merged. Our
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approach allows for parallel exploration of multiple solutions, unlike classical

backtracking approaches, which explore them sequentially. However, maintaining

a large number of clusters increases computational complexity. To mitigate this,

we retain only the highest-scoring cluster for each piece.

This selection process is applied whenever new clusters are formed (e.g.,

through merging) to ensure that only the most promising clusters are retained.

Striking the right balance is crucial: retaining too few clusters may hinder suc-

cessful assembly, while keeping too many increases computational overhead.

5.3.1 Cluster Score
Each cluster is assigned a score. An ideal scoring function should satisfy the fol-

lowing properties:

• Adding a correctly aligned piece increases the score, whereas an incorrectly

aligned piece decreases it. In other words, a larger cluster does not always

imply a better score.

• The number of neighboring pairs matters. In a graph representation, among

clusters with the same number of pieces, those with more edges (neighbor

pairs) receive higher scores. A new piece that connects multiple existing

pieces contributes more significantly than one that connects only a single

piece.

The cluster score function SC is defined as:

SC(C) =
∑︁

i,j∈neighbors
S(i, j)√︂

|C|
(5.1)

where S(i, j) represents the pair score between pieces i and j as defined

in Section 4.3.2, and |C| denotes the number of pieces in cluster C . The denomi-

nator normalizes the score, reducing the bias toward larger clusters. The square

root was chosen empirically for optimal performance.

5.3.2 Selection Algorithm
Using the score defined above, the best clusters are selected for the next iteration.

The selection process, detailed in Algorithm 2, ensures that for each piece p,

the final cluster set C ′
contains the highest-scoring cluster from C that includes p.
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Algorithm 2 Cluster selection

Input: C sorted by SC in descending order

Output: C ′

1: C ′ ← ∅
2: Pused ← ∅ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of pieces represented in C ′

3: for all C ∈ C do
4: if C ̸⊆ Pused then
5: Pused ← Pused ∪ C
6: C ′ ← C ′ ∪ {C}
7: end if
8: end for

5.4 Incorporating a New Match
This section describes how a new match is incorporated into the assembly process.

The algorithm is illustrated in Figure 5.3.

First, we select the highest-scoring match that has not yet been used. If this

match is inconsistent with trusted clusters, it is discarded and the next best match

is considered. In contrast, if any cluster already contains this match, we mark it

as trusted and add it to the set of trusted clusters, as described in Section 5.1.

When a new match is selected, it is applied to the current set of clusters, C,

attempting to merge it with existing clusters. If it does not share any common

pieces with existing clusters, it is treated as a new independent cluster.

If the new match is incorrect, it may corrupt some of the initial clusters.

To address this, we apply the cluster selection strategy (see Section 5.3), where

the input is the union of the initial cluster set C and the new clusters created by

incorporating the new match.

5.5 Recombining Clusters
The recombination step ensures that clusters capable of being merged are merged.

Additionally, in this step, we attempt to reintroduce matches that were previously

discarded due to conflicts during the merging process. The recombination process

is illustrated in Figure 5.4.

During the merging of inconsistent clusters, some valid matches may have

been accidentally discarded. To mitigate this, we reintroduce them during the re-

combination stage when merging clusters with common pieces.

At this step, all previously used matches are readded to the cluster set, giving

them another chance to be incorporated as more context becomes available. To
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Figure 5.3 Incorporation of a new match.

49



Merge clusters with common
pieces

New
Clusters

Cluster selection

Ensure consistency with
trusted clusters

New
Clusters

Clusters

Trusted
Clusters

Used
Matches

Data

Input

Update value

Recombine clusters

Figure 5.4 Recombination of clusters.
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(a) (b)

Figure 5.5 Example of two output clusters. The clusters share many common pieces
but could not be merged because cumulative inaccuracies would cause some pieces
to overlap. The differing pieces are highlighted in green (correct) and red (incorrect).

avoid redundant computation, these matches are merged only with larger clusters

from the previous stage, rather than with each other.

After trying to merge all clusters with common pieces, we once again en-

sure consistency with trusted clusters and select the best clusters as described

in Section 5.3.

5.6 Output
The algorithm produces a set of clusters C, where each cluster represents a partial

assembly of the image, consisting of a set of pieces and their respective trans-

formations. In the ideal case, where the entire image has been reconstructed,

the algorithm outputs a single cluster that contains all pieces.

Otherwise, multiple clusters are produced. As described in Section 5.3, mul-

tiple clusters may share common pieces. An example of such a case is shown

in Figure 5.5, where the two clusters are nearly identical, but could not be merged

due to cumulative inaccuracies in the assembly process. However, since both

clusters contain valuable information about the assembly, we choose to output

all of them, even if it results in some redundancy.
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Chapter 6

Comparison with PairingNet

Our work builds on the approach introduced in [2], which is denoted as PairingNet.

Although we adopt its core idea, we introduce several significant modifications.

In this chapter, we outline the key differences between our method and PairingNet

and present a comparative evaluation.

6.1 Key Differences
The main concept of PairingNet involves extracting the contour of each piece,

then obtaining a 7 × 7 patch around each contour point, which is processed

by a neural network to generate embedding vectors. These embeddings are then

used to establish correspondences between contour points of two pieces. While

PairingNet addresses both pair-matching (where two pieces are given as input

and the output is either a transformation or no match) and pair-searching (where

a set of images is provided and the model predicts the probability of a match for

each pair), we focus primarily on the pair-matching problem, referred to in this

work as local assembly.

The most significant difference in our approach is the use of a 1D convolu-

tional network to generate embeddings instead of a graph convolutional network.

Additionally, PairingNet utilizes two types of input features, contour information

and texture information, training separate networks for each and later fusing

the embeddings. In contrast, we use only texture information, as it implicitly

contains contour features, significantly simplifying the architecture.

Both approaches construct a similarity matrix by multiplying the embeddings

of two pieces. However, the post-processing and loss function differ. We formulate

the task as a set of binary classification problems and use Binary Cross Entropy

(BCE) as the loss function. In contrast, PairingNet applies a softmax function

in both directions, multiplies the results, and employs the following loss function:
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Lij =
∑︂
k,l

(︃
β1(1−Mij

kl)γ log Mij
klG

ij
kl + β2

(︂
Mij

kl

)︂γ
log

(︂
1−Mij

kl

)︂ (︂
1−Gij

kl

)︂ )︃
(6.1)

where β1, β2, and γ are hyperparameters such that β1 + β2 = 1, Mij
kl is

the predicted similarity matrix and Gij
kl is the ground truth similarity matrix. We

opted for a binary classification approach to avoid the need for hyperparameter

tuning while providing a more intuitive and simplified framework.

Another key difference lies in transformation reconstruction. PairingNet

enhances the similarity matrix by applying dilation with a diagonal kernel to rein-

force diagonal patterns before directly using RANSAC for transformation estima-

tion. In contrast, we apply a Hough transform to detect diagonal lines, extracting

only the points along the detected line for RANSAC. Additionally, we refine

the estimated transformation using the Iterative Closest Point (ICP) algorithm

to further improve accuracy.

6.2 Dataset Comparison
Similarly to us, [2] designed their own algorithm for fragmenting images into

pieces and used it to generate the dataset. Their approach to the fragmentation

process is top-down, with the image being recursively divided into smaller and

smaller pieces. Fragments are split either by straight lines or by a curve simulating

hand-torn paper. In contrast, our approach is more bottom-up, with the image

being initially fragmented into many small pieces, which are then iteratively

merged together until the desired number of pieces is reached.

Both of these approaches are comparable in terms of the diversity of the shape

of the generated pieces. For the purpose of local assembly, these two approaches

are probably equivalent. However, for the global assembly, we believe that our

approach generates more diverse patterns, as some patterns, like crossings of two

lines, are impossible or unlikely to achieve by iteratively dividing the image.

Their dataset consists of 8,196 pieces and 14,951 matching pairs. The number

of pieces in the training, validation, and test sets is detailed in Table 6.2a. In addi-

tion, in the test set, they categorized the matches into three difficulty levels based

on the length of the shared border. In contrast, our dataset contains 21,877 pieces

and 41,861 matches for training. The number of pieces in the training, validation,

and test sets is detailed in Table 6.2b.

It is important to highlight that, in PairingNet’s dataset, pieces originating

from the same image can appear in different splits. This results in visually simi-

lar pieces being present in both the training and test sets. In contrast, we split
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(a) Low difficulty. (b)Medium difficulty. (c) High difficulty.

Figure 6.1 Example of matching pairs of pieces from the PairingNet dataset [2] and
their difficulty.

the original images into distinct training, validation, and test sets before frag-

menting them into pieces, ensuring that pieces in the training and test sets are

as different as possible.

6.3 Comparative Evaluation
In this section, we compare the performance of our model with that of PairingNet.

First, we evaluate our model, trained on our own dataset, using the test split

from the PairingNet dataset. We then compare the recall of the correctly matched

pairs with the results reported by the authors in [2]. Additionally, we train our

model on the PairingNet training set and evaluate it on both our test set and
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Total Train Validation

Test

Full High Medium Low

Fragments 8,196 4,098 819 3,279 1,071 1,671 1,090

Pairs 14,951 3,654 137 2,370 663 1,103 604

(a) PairingNet dataset

Total Train Validation Test

Fragments 27,866 21,877 4,190 1,799

Pairs 53,577 41,861 8,130 3,586

(b) Our synthetic dataset

Figure 6.2 Comparison of dataset sizes in terms of number of fragments and matching
pairs: (a) the PairingNet dataset, and (b) our synthetic dataset.

the PairingNet test set to assess its generalization across datasets.

6.3.1 Evaluating Our Model on the PairingNet Dataset
As an initial experiment, we tested our best-performing model trained on our

synthetic data on the PairingNet dataset. Our first results were suboptimal, with

a total recall of only 0.684, significantly lower than their reported recall of 0.835.

Upon investigating their data and source code, we discovered that their pieces

were rotated using nearest-neighbor interpolation. This method resulted in low

image quality and introduced artifacts (as shown in Figure 6.3a), which negatively

impacted the performance of our model. Our model was not trained on such

degraded images, and these artifacts are also uncommon in real-world scenarios,

where digitalized fragments are typically preprocessed to obtain smooth contours.

To address this issue, we applied preprocessing to improve the quality of Pair-

ingNet’s data, making it more comparable to both our dataset and real-world

examples. Specifically, we extracted the binary mask of each piece, applied

Gaussian blurring, and then re-thresholded it to obtain a refined binary mask.

The image content remained largely unchanged, with newly introduced gaps

filled by averaging values from neighboring pixels. However, this process resulted

in some loss of sharp edge details, as can be seen in Figure 6.3b.

After preprocessing, our model achieved results comparable to those reported

in the original PairingNet paper. In particular, our performance was nearly

identical on low- and medium-difficulty samples but remained lower for high-

difficulty cases. The results are shown in Table 6.1.

For this evaluation, we used the model trained on the variant of eroded data.
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(a) Original image, full piece and detail. (b) Preprocessed image, full piece and de-
tail.

Figure 6.3 Preprocessing effects on the PairingNet dataset.

6.3.2 Training Our Model on the PairingNet Dataset
To further compare the approaches, we trained our model using the PairingNet

dataset without preprocessing. However, a difference emerged in data processing.

In our pipeline, contour points are extracted directly from the piece masks.

In contrast, PairingNet provides precomputed contour points, which did not

match those we obtained from their masks. Analyzing their source code revealed

that their contour points were extracted from the original, unrotated images and

later rotated using the same transformation applied to the piece. Due to the use

of nearest-neighbor interpolation, this process significantly altered the contours.

In their paper, [2] reported using an embedding dimension of DE = 64. Our

experiments with our dataset showed the best results with DE = 128. For a fair

comparison, we trained the models using both configurations: DE = 64 and

DE = 128.

As in the previous experiment, we achieved similar results on low- and

medium-difficulty samples but performed worse on high-difficulty cases. De-

tailed results are shown in Table 6.1.

The evaluation results indicate that the model trained on the PairingNet

dataset is likely overfitted to its training data, as it performs significantly worse

on our test set. Specifically, it achieves an overall recall of only 0.389 on eroded

data and 0.463 on non-augmented data, compared to 0.758 and 0.850 respectively

for the model trained on our dataset. When evaluated on the PairingNet test

set, both models perform comparably, suggesting that our training data offer

better generalization across datasets. The complete results are provided in the ap-

pendix C.
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Model

Training

Dataset

Test Pre-

processing

DE
Recall

All Low Medium High

PairingNet PairingNet - 64 0.835 0.961 0.879 0.606

Ours Ours

No

128

0.684 0.894 0.736 0.407

Yes 0.779 0.964 0.878 0.445

Ours PairingNet No

64 0.809 0.967 0.883 0.541

128 0.796 0.952 0.864 0.539

Table 6.1 Comparison of results on the PairingNet dataset for the pair-matching task.
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Chapter 7

Results

In this chapter, we present the evaluation results of our method. We provide both

quantitative results on our test set and qualitative results on out-of-distribution

images, including real-world examples.

7.1 Quantitative Results
The algorithm produces a set of clusters, C, which may share common pieces.

To ensure that each piece and match is counted only once when computing

the metrics, we extract a set of disjoint clusters, Ccorr. Each cluster in Ccorr is

a subset of some clusters in C and is correctly assembled, meaning the relative

transformations between the pieces are within an acceptable tolerance. In our

evaluations, we use a rotation tolerance of θtol = 0.17rad ≈ 10◦
and a translation

tolerance of ttol = 25 px. For reference, the original images in our experiments

have a maximum dimension of 1600 px, and the average fragment size scales

inversely with the number of pieces—for 100-piece puzzles, the smallest fragments

are typically around 200× 200 px.

7.1.1 Metrics
We evaluate the performance of our method using the following metrics:

• Largest Connected Component (ELCC): The size of the largest correctly

assembled cluster relative to the total number of pieces:

ELCC = maxC∈Ccorr
|C|

N
. (7.1)

• Number of Connected Components (ENCC): The total count of correctly

assembled clusters:
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ENCC = |Ccorr|. (7.2)

• Rotation Error (Eθ): The average rotation error of correctly assembled

pieces, measured in radians. Using the ground truth set of neighboring

piece pairs, Ngt, we define the set of neighbors for each cluster C :

NC = {(i, j) | (i, j) ∈ Ngt, i ∈ C, j ∈ C}. (7.3)

The rotation error is then computed as:

Eθ =
∑︁

C∈Ccorr

∑︁
(i,j)∈NC

|θgt
ij − θC

ij |∑︁
C∈Ccorr

|NC |
, (7.4)

where θgt
ij is the true angle between pieces i and j, and θC

ij is the estimated

angle in cluster C .

• Translation Error (Et): The average translation error of correctly as-

sembled pieces, measured in pixels. Defined analogously to the rotation

error:

Et =
∑︁

C∈Ccorr

∑︁
(i,j)∈NC

∥tgt
ij − tC

ij∥∑︁
C∈Ccorr

|NC |
, (7.5)

where tgt
ij and tC

ij are the ground truth and estimated translation vectors

between pieces i and j.

• Registration Error (Ereg): A combined metric that normalizes rotation

and translation errors by their respective tolerances:

Ereg = 1
2

(︃
Eθ

θtol
+ Et

ttol

)︃
. (7.6)

7.1.2 Evaluation Data
For evaluation, we use our synthetic data. We have two test datasets consisting of

the same images divided into the same pieces, and the only difference is that to one

of them was applied simulated erosion to simulate damaged pieces. The original

images have different shapes and sizes, but none of them has larger size above

1600px. Each image is fragmented into 10, 30, 50 or 100 pieces, the counts are

shown in Table 7.1.
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Pieces per image Number of images

10 30

30 10

50 10

100 5

Total 55

Table 7.1 Composition of synthetic test datasets.

The results for a model trained on eroded data are shown in Table 7.3 and

the results for a model trained on non-eroded data are shown in Table 7.4.

We also evaluate our method on the JigsawNet dataset (Section 3.2.1). The com-

position of this dataset is shown in Table 7.2 and we report the results in Table 7.5.

We did not evaluate our method on the 400-piece JigsawNet dataset due

to performance limitation. The large number of pieces led to excessive processing

time, making it impractical for our current evaluation. This limitation is tied

to the global assembly process and could be addressed in future research through

optimization techniques to improve efficiency for larger datasets.

For both of our models, only one of the images from the JigsawNet dataset

was not completely assembled, and it was the example with 9 pieces (Figure 7.1).

Figure 7.1 The only incorrectly assembled image from the JigsawNet dataset using
our method.
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Pieces per image Number of images

9 20

36 6

100 6

400 5

Total 37

Table 7.2 Composition of JigsawNet test dataset.

Train

Dataset

# Pieces Eθ Et Ereg ELCC ENCC

Eroded

10 0.0018 1.7217 0.0399 0.9522 1.47

30 0.0044 2.4723 0.0623 0.9500 2.00

50 0.0108 4.3382 0.1186 0.9800 1.90

100 0.0144 4.4985 0.1322 0.9660 4.20

All 0.0051 2.5863 0.0667 0.9581 1.89

Non-

Augmented

10 0.0009 1.5257 0.0280 0.9622 1.37

30 0.0025 2.0379 0.0352 0.9900 1.30

50 0.0023 1.6697 0.0335 0.9900 1.50

100 0.0043 2.0358 0.0410 0.9860 2.00

All 0.0017 1.6914 0.0315 0.9745 1.44
All 0.0034 2.1389 0.0421 0.9663 1.66

Table 7.3 Results for our synthetic test datasets and model trained on dataset with
simulated erosion.
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Train

Dataset

# Pieces Eθ Et Ereg ELCC ENCC

Eroded

10 0.0018 1.7404 0.0344 0.9148 1.80

30 0.0048 2.5816 0.0647 0.8833 3.20

50 0.0100 3.8897 0.0920 0.8920 5.30

100 0.0127 3.5292 0.0981 0.7100 12.00

All 0.0048 2.4467 0.0562 0.8863 3.62

Non-

Augmented

10 0.0009 1.5489 0.0284 0.9896 1.10

30 0.0016 1.6343 0.0319 0.9967 1.10

50 0.0022 1.5146 0.0316 0.9960 1.20

100 0.0030 1.5218 0.0393 0.9960 1.40

All 0.0014 1.5557 0.0306 0.9926 1.15
All 0.0031 2.0012 0.0434 0.9395 2.38

Table 7.4 Results for our synthetic test datasets and model trained on non-augmented
data.

Train

Dataset

# Pieces Eθ Et Ereg ELCC ENCC

Eroded

9 0.0010 1.9167 0.0349 0.9944 1.05

36 0.0007 1.9066 0.0339 1.0000 1.00

100 0.0016 1.8682 0.0358 1.0000 1.00

All 0.0011 1.9057 0.0349 0.9965 1.03

Non-

Augmented

9 0.0010 1.8957 0.0410 0.9944 1.05

36 0.0007 1.8980 0.0402 1.0000 1.00

100 0.0016 1.9166 0.0430 1.0000 1.00

All 0.0011 1.9000 0.0412 0.9965 1.03

Table 7.5 Results for JigsawNet test dataset.
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7.2 Qualitative Results
To gain deeper insights, we analyze results on out-of-distribution images. We

consider two real-world examples: a digitized jigsaw puzzle with irregular pieces

and a fragmented dry-plate negative capturing Cesare da Sesto’s Madonna with
Saint John (Figure 1).Additionally, we include synthetic examples not present

in the training set to evaluate the model’s reliance on color and shape information.

An overview of the most common errors made by our method is provided

in Appendix B.

7.2.1 Digitalized Jigsaw Puzzle
We evaluated our method on jigsaw puzzle with 101 irregularly shaped pieces.

Unlike standard puzzles, its overall shape is non-rectangular. One piece contained

a hole designed to fit another smaller piece— a case our method does not handle—

so we excluded this piece, using only 100 pieces.

The algorithm successfully assembled the puzzle with all 100 pieces correctly

placed (Figure 7.2). The total assembly time was approximately 25 minutes.

7.2.2 Fragmented Negative
We applied our method to a fragmented negative, which was introduced as our

main motivation in the Introduction (see Figure 1). The algorithm successfully as-

sembled all but three pieces correctly (see Figure 7.3). One piece was intentionally

omitted because it fits into another piece with a hole, a scenario that our method

does not currently handle. The other two pieces were likely placed incorrectly

because they are too small compared to the rest and lack distinctive features that

would help the algorithm determine their correct placement.

7.2.3 Puzzles Without Image Information
To assess the model’s reliance on shape versus color, we created synthetic puzzles

without any image information.

For a 30-piece monochromatic puzzle, the algorithm correctly assembled 28

pieces, with one misaligned (top right corner) and one missing. The result is

shown in Figure 7.4. For 100 pieces, the algorithm was able to find some correct

clusters, but overall assembly was unsuccessful.
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Figure 7.2 Assembly of digitized jigsaw puzzle with 100 pieces. One piece wasmanually
omitted because it fits into another piece with a hole, a scenario that our method does
not currently handle.
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(a) Negative assembled by our method. (b)Missing pieces

Figure 7.3 Reassembly of the fragmented dry-plate negative of Cesare da Sesto’s
Madonna with Saint John. Eleven of fourteen fragments were correctly aligned; three
remain unresolved.
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Figure 7.4 Assembly of monochromatic puzzle with 30 pieces. The piece at the top
right corner is slightly shifted to the left and one piece at the bottom is missing, otherwise
the assembly was successful.
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Figure 7.5 An image with a color gradient overlaid with a regular texture, fragmented
into 9 square pieces. The left image shows the original, while the right image displays
the assembly produced by our method, which is almost entirely incorrect. This highlights
that our model does not rely heavily on color information for reconstruction.

7.2.4 Puzzles with Rectangular Pieces
Many studies focus on puzzles with regular, rectangular pieces, making it relevant

to evaluate our method in this context. With all pieces having the same shape

and size, the method can use only the color information to assemble the puzzle.

We tested a color gradient puzzle, where the model failed to find any matches,

resulting in an unsuccessful assembly. When a simple repeating texture was

overlaid, the model detected matches, but most were incorrect. The result is

shown in Figure 7.5.

For puzzles composed of irregular textures:

• A 3× 3 grid (9 pieces) was fully assembled (Figure 7.6).

• A 4× 4 grid (16 pieces) had 12 correctly placed pieces.

• A 5× 5 grid (25 pieces) had 19 correctly placed pieces.

We also tested artwork images divided into rectangular pieces. In most cases,

the model failed to assemble even small puzzles (e.g., 9 pieces). One such example

is shown in Figure 7.7, where the algorithm correctly identified two clusters but

failed to merge them.
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Figure 7.6 Texture image, fragmented into 9 square pieces and correctly assembled
by our method.

Figure 7.7 An artwork fragmented into 9 rectangular pieces and assembled using our
method. The algorithm successfully formed two clusters—one containing 7 pieces and
the other 2—but was unable to merge them into a complete assembly.
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7.2.5 General Findings
The experiments with apictorial and rectangular puzzle pieces suggest that

the model prioritizes shape and change in intensity over absolute color. One

possible reason is that it was primarily trained on fragmented rectangular art-

works, reinforcing the assumption that straight edges (image borders) do not

match, even if they share the same color.

These findings also suggests that a simplified input representation for the mo-

del may be sufficient. Instead of three color channels, a single-channel grayscale

or edge-based representation could be viable alternatives. This could be subject

to further research.
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Chapter 8

Conclusion

In this thesis, we successfully addressed the challenging problem of artwork

reconstruction, particularly focusing on real-world fragmentation patterns that

are often encountered in historical and artwork-based puzzles. One of the key

milestones was the reconstruction of a fragmented dry-plate negative, a complex

example that was solved effectively using our methodology. This achievement

was made possible through the creation of a synthetic dataset tailored to repli-

cate realistic fragmentation scenarios, which was instrumental in training and

evaluating the model. The diversity of our dataset in image content, including

various types of artwork such as drawings, paintings, and photographs, ensured

the robustness and generalizability of our approach. The model’s performance

on this custom dataset was critical in testing its potential for practical applications

in artwork restoration and puzzle reconstruction.

Our results on one of the publicly available datasets, the JigsawNet dataset

[21], were highly promising, with near-perfect performance achieved on puzzles

containing up to 100 pieces. The model demonstrated exceptional accuracy,

with only a single error in all examples. However, a limitation of the global

assembly method became evident during this evaluation, as the model struggled

to efficiently handle the 400-piece puzzles. Although it performed well on smaller

puzzles, the size of larger puzzles posed challenges, revealing areas where the

current approach can be improved for scalability.

Furthermore, we performed a comparative analysis with PairingNet, a frag-

ment assembly method introduced in [2]. Our approach achieved comparable

results, particularly on low- and medium-complexity puzzles, even when trained

solely on our synthetic dataset. We also trained our model using the PairingNet

training set and observed similar performance on its corresponding test set. How-

ever, when evaluated with our own test data, the model trained on the PairingNet

dataset performed significantly worse, suggesting that our dataset offers better

generalization to various fragmentation scenarios.
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These outcomes highlight the effectiveness of our global and local assembly

strategies in solving complex artwork reconstruction problems. Our approach

demonstrated progress in both the accuracy and efficiency of reconstructing

fragmented artwork, providing a reliable solution to a long-standing problem

in the field.

8.1 Contribution
The contributions of this thesis can be summarized as follows:

• Synthetic Dataset Creation: The development of a synthetic dataset

tailored for artwork reconstruction, containing diverse content and designed

to mimic real-world fragmentation patterns.

• Local Assembly Method: The proposal of a novel local assembly method

that uses a 1D convolutional neural network (CNN) with a U-Net-like ar-

chitecture to identify pixel-level correspondences along the contours of the

puzzle piece. This method enhances piece-level matching by computing

similarity and aligning transformations using RANSAC and ICP.

• Confidence Scoring Mechanism: Introduction of a confidence scoring

approach that quantifies the reliability of piece matches based on the simi-

larity matrix and match length, optimizing the model’s ability to prioritize

high-confidence matches during the assembly process.

• Global Assembly Algorithm: The proposal of a global assembly method

that reconstructs images by merging puzzle piece matches into clusters,

resolving inconsistencies during the merging process without backtracking.

The algorithm ranks candidate matches by confidence score, detects cycles

in the match graph to identify trusted clusters, and selects the highest-

scoring clusters to efficiently assemble larger puzzles.

• Comprehensive Evaluation: Evaluation of the proposed method on both

synthetic and real-world data, including two publicly available benchmarks:

JigsawNet [21] and PairingNet [2] datasets. Additional experiments were

conducted to assess the model’s performance using only shape (monochro-

matic puzzles) or only color (grid-like rectangular puzzles) information.

These contributions aim to advance the state of artwork reconstruction, par-

ticularly in handling real-world fragmentation.
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8.2 Future Work
Although the approach presented in this thesis shows promising results, there

are several avenues for future work that could further enhance the performance

and applicability of the method.

8.2.1 Feature Extraction
Currently, the model takes as input the features extracted from image patches

along the piece contours, using all three RGB channels. However, experiments

with puzzles consisting solely of rectangular pieces suggest that the model does

not heavily rely on color information but instead focuses on intensity changes,

such as edges. This observation raises the possibility that providing all three

color channels might be excessive. Further experiments could explore alternative

image representations, such as grayscale images or just edge representations.

Another possibility for future work is to explore the use of a neural network

to extract features for each contour point from the image, rather than relying

on explicit image patches. The advantage of this approach is that the network

would have access to the entire image, allowing it to capture global contextual

information that may enhance feature representation and improve matching

accuracy.

8.2.2 Global Assembly for Large Puzzles
Our experiments revealed that the global assembly solution does not scale effi-

ciently. Although it can successfully assemble puzzles with up to 100 pieces in a

few minutes or up to an hour in the worst-case scenarios, attempting to assemble

400-piece puzzles from the JigsawNet dataset can take several days. This remains

the primary limitation of our method. Future work should focus on develop-

ing more efficient global assembly strategies or optimizing the implementation

to handle larger puzzles more quickly.

8.2.3 Match Reconstruction
Currently, the match reconstruction process is based on traditional computer

vision techniques such as the Hough transform, RANSAC, and ICP. Future work

could explore the use of deep learning approaches to directly estimate the trans-

formation between pieces.
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Appendix A

Class Imbalance - Evaluation
Results

For the following experiments, we used a network with DE = 128, non-

augmented training data, a batch size of 16, and a training loss of 0.0001.

A.1 Weights

Weight of Pos. Samples # Pieces P R F1 Acc

10

10 0.536 0.927 0.679 0.719

30 0.364 0.857 0.511 0.784

50 0.312 0.865 0.459 0.831

100 0.229 0.841 0.359 0.863

All 0.360 0.872 0.502 0.799

15

10 0.488 0.922 0.639 0.664

30 0.289 0.869 0.433 0.700

50 0.261 0.863 0.400 0.785

100 0.195 0.849 0.316 0.832

All 0.308 0.876 0.447 0.745

25

10 0.447 0.920 0.601 0.608

30 0.231 0.852 0.363 0.607

50 0.188 0.874 0.310 0.678

100 0.121 0.861 0.212 0.712

All 0.247 0.877 0.372 0.651

Table A.1 Results for different weights of positive samples. Weight w means that for
the loss computation, positive samples are weighted by w, while the weight of negative
samples is 1.
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A.2 Masking

Ratio of Neg. Samples # Pieces P R F1 Acc

1

10 0.353 0.869 0.502 0.446

30 0.150 0.787 0.251 0.383

50 0.096 0.799 0.172 0.364

100 0.053 0.771 0.099 0.372

All 0.163 0.806 0.256 0.391

2

10 0.364 0.891 0.517 0.465

30 0.159 0.818 0.266 0.406

50 0.106 0.827 0.188 0.407

100 0.064 0.836 0.120 0.446

All 0.173 0.843 0.273 0.431

4

10 0.394 0.911 0.550 0.521

30 0.184 0.831 0.301 0.493

50 0.122 0.840 0.214 0.488

100 0.075 0.817 0.138 0.539

All 0.194 0.850 0.301 0.510

8

10 0.394 0.907 0.549 0.521

30 0.193 0.855 0.315 0.510

50 0.136 0.844 0.235 0.544

100 0.095 0.844 0.170 0.630

All 0.204 0.863 0.317 0.551

16

10 0.408 0.912 0.564 0.547

30 0.218 0.867 0.348 0.571

50 0.159 0.872 0.269 0.609

100 0.116 0.865 0.204 0.696

All 0.225 0.879 0.346 0.606

Table A.2 Results for different ratios of negative samples. A ratio of n means that for
the loss computation, n times more negative samples are used.
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Appendix B

Common Errors

This appendix discusses common types of errors that can occur during the assem-

bly process of fragmented objects.

B.1 Error Accumulation
In cases involving eroded fragments, pieces are sometimes not placed with perfect

accuracy. As the assembly progresses, these small inaccuracies can accumulate,

eventually preventing new pieces from being placed without causing significant

overlaps—which the algorithm disallows. An example of such a situation is shown

in Figure B.1.

Figure B.1 Assembly failure due to accumulated placement errors (cropped).
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In other instances, these cumulative errors result in noticeable gaps between

pieces rather than overlaps, as illustrated in Figure B.2.

Figure B.2 Large gaps caused by accumulated placement inaccuracies (cropped).

B.2 Incorrectly Placed Borders
When there is insufficient visual information near the borders of an image, edge

pieces may be incorrectly matched. Since such misplacements typically do not

cause overlaps or inconsistencies, they often go uncorrected in later assembly

stages. Examples of this type of error are shown in Figure B.3.

Figure B.3 Examples of incorrect matches along the image borders leading to unsuc-
cessful assembly.
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Appendix C

Comparison of Models Trained
Using Our and PairingNet Datasets

Table C.1 presents a comparison of models trained on our dataset and the Pair-

ingNet dataset, evaluated on our test set.
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Train

Dataset

DE
Test

Dataset

# Pieces P R F1 Acc ELCC

O
u

r
s

128

Eroded

10 0.458 0.840 0.592 0.628 0.939

30 0.239 0.737 0.361 0.656 0.967

50 0.183 0.752 0.294 0.699 0.992

100 0.120 0.704 0.204 0.752 0.983

All 0.250 0.758 0.363 0.684 0.970

Non-

Augmented

10 0.465 0.890 0.610 0.635 0.978

30 0.246 0.813 0.378 0.648 0.995

50 0.190 0.821 0.308 0.692 0.997

100 0.359 0.875 0.481 0.785 1.000

All 0.315 0.850 0.445 0.690 0.992

P
a
i
r
i
n

g
N

e
t

128

Eroded

10 0.223 0.501 0.309 0.278 0.668

30 0.069 0.384 0.118 0.241 0.437

50 0.040 0.356 0.072 0.240 0.428

100 0.017 0.279 0.031 0.227 0.282

All 0.087 0.380 0.132 0.247 0.454

Non-

Augmented

10 0.231 0.534 0.323 0.280 0.678

30 0.076 0.422 0.128 0.245 0.620

50 0.047 0.419 0.084 0.243 0.596

100 0.019 0.328 0.036 0.220 0.334

All 0.093 0.426 0.143 0.247 0.557

P
a
i
r
i
n

g
N

e
t

64

Eroded

10 0.216 0.494 0.301 0.261 0.682

30 0.073 0.417 0.125 0.230 0.663

50 0.037 0.337 0.067 0.227 0.404

100 0.018 0.306 0.034 0.216 0.298

All 0.086 0.389 0.132 0.234 0.512

Non-

Augmented

10 0.245 0.582 0.345 0.290 0.729

30 0.081 0.466 0.138 0.232 0.650

50 0.048 0.445 0.087 0.228 0.662

100 0.021 0.358 0.039 0.206 0.474

All 0.099 0.463 0.152 0.239 0.629

Table C.1 Comparison of results on our test set for models trained on our and Pair-
ingNet [2] datasets.
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Appendix D

Local Assembly Results

For these experiments, we used a network with DE = 128, batch size 16 and

training loss 0.0001. Ratio of negative samples in the training set was 0.1 and the

weight of positive samples in loss computation was set on 10. The kernel size for

convolutional layers was 3. The results are presented in Table D.1.
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Train

Dataset

Test

Dataset

# Pieces P R F1 Acc EFA ELCC Eθ Et Ereg

E
r
o

d
e
d

E
r
o

d
e
d

10 0.4576 0.8399 0.5923 0.6283 0.6667 0.9387 0.0039 2.4405 0.0522

30 0.2388 0.7373 0.3608 0.6559 0.5000 0.9667 0.0077 2.8623 0.0704

50 0.1830 0.7520 0.2939 0.6987 0.6500 0.9920 0.0118 3.1975 0.0879

100 0.1196 0.7044 0.2043 0.7524 0.4000 0.9830 0.0177 3.3993 0.1088

All 0.2497 0.7584 0.3628 0.6838 0.5542 0.9701 0.0103 2.9749 0.0798

N
o

n
-
A

u
g
m

e
n

t
e
d

10 0.4647 0.8898 0.6105 0.6350 0.7667 0.9780 0.0012 1.6818 0.0315

30 0.2465 0.8133 0.3783 0.6478 0.7000 0.9950 0.0029 1.7974 0.0384

50 0.1897 0.8210 0.3078 0.6922 0.8500 0.9970 0.0050 1.9927 0.0479

100 0.3593 0.8750 0.4814 0.7852 1.0000 1.0000 0.0073 2.0079 0.0548

All 0.3150 0.8498 0.4445 0.6900 0.8292 0.9925 0.0041 1.8699 0.0431

J
i
g
s
a
w

N
e
t

9 0.6761 1.0000 0.8067 0.8403 1.0000 1.0000 0.0019 2.1091 0.0406

36 0.1912 0.9944 0.3208 0.5963 1.0000 1.0000 0.0014 2.0873 0.0390

100 0.1300 0.9926 0.2298 0.7583 1.0000 1.0000 0.0026 2.1147 0.0429

400 0.0304 0.9730 0.0590 0.6980 1.0000 1.0000 0.0027 2.1017 0.0429

All 0.2569 0.9900 0.3541 0.7232 1.0000 1.0000 0.0021 2.1032 0.0414

All 0.2739 0.8661 0.3871 0.6990 0.7944 0.9875 0.0055 2.3160 0.0548

N
o

n
-
A

u
g
m

e
n

t
e
d

E
r
o

d
e
d

10 0.4103 0.7881 0.5395 0.5680 0.6889 0.9341 0.0035 2.4247 0.0506

30 0.3051 0.7638 0.4351 0.7664 0.5000 0.9378 0.0070 2.6426 0.0646

50 0.2495 0.6732 0.3641 0.8054 0.3333 0.9673 0.0109 3.0342 0.0826

100 0.1752 0.6472 0.2747 0.8430 0.4000 0.9787 0.0168 3.2602 0.1039

All 0.2851 0.7181 0.4034 0.7457 0.4806 0.9545 0.0096 2.8404 0.0754

N
o

n
-
A

u
g
m

e
n

t
e
d

10 0.5361 0.9269 0.6793 0.7187 0.9111 0.9947 0.0013 1.5699 0.0299

30 0.3644 0.8573 0.5114 0.7840 0.9250 0.9992 0.0028 1.6116 0.0350

50 0.3124 0.8649 0.4588 0.8309 1.0000 1.0000 0.0049 1.8796 0.0458

100 0.2289 0.8407 0.3589 0.8627 1.0000 1.0000 0.0067 1.8473 0.0505

All 0.3604 0.8725 0.5021 0.7991 0.9590 0.9985 0.0039 1.7271 0.0403

J
i
g
s
a
w

N
e
t

9 0.7362 1.0000 0.8481 0.8806 1.0000 1.0000 0.0018 2.0663 0.0397

36 0.2648 0.9944 0.4183 0.7348 1.0000 1.0000 0.0013 2.0000 0.0372

100 0.2405 0.9981 0.3875 0.8854 1.0000 1.0000 0.0025 2.0071 0.0408

400 0.0446 0.9798 0.0852 0.7953 1.0000 1.0000 0.0026 2.0284 0.0413

All 0.3215 0.9931 0.4348 0.8240 1.0000 1.0000 0.0020 2.0254 0.0398

All 0.3223 0.8612 0.4467 0.7896 0.8132 0.9843 0.0052 2.1977 0.0518

Table D.1 Local assembly performance across different training and testing datasets.
Metrics are reported for varying numbers of puzzle pieces.
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